6
Numerical examples

In the following, some numerical examples are presented in order to validate
the formulations proposed in the previous chapters of finite, infinite and halfspace
problems. The boundary element methods for axisymmetric problems were pro-
grammed in FORTRAN 90/95, for linear and quadratic elements. The numbers of
integration points used in the Gauss-Legendre and the logarithmic weighted Gauss
quadrature rules are 6 and 8, respectively.

For each example, one compares displacements along the boundary as well as
displacements and stresses at internal points in the domain with the corresponding

analytical solutions. A relative error is presented,

RS
Error = JZ(X%—XZX,,) (6-1)

where x, are the analytical results, x, are the numerical results and the summation
index i refers to the number of results being analyzed.
The abbreviations used in the following tables and graphics are, regarding the

formulation,
— Analytical: Analytical solution;

— BEM: Conventional Boundary element method (Section 3.1.3);

— KBEM: Boundary element method using a stiffness matrix and equivalent

nodal forces (Section 3.1.4);

— SHBEM: Simplified-hybrid boundary element method;
and regarding the fundamental solution employed,

— F: Fullspace fundamental solution;

— H: Halfspace fundamental solution.
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6.1
Examples for finite domains

6.1.1
Disc under axial compression

A disc of radius R = 10 m, thickness e = 1 m, shear modulus u = 12 MPa and
Poisson’s ratio v = 0.25, as depicted in Fig. 6.1, is submitted to a distributed axial

compressive load 1 = =300 N/m along the boundary segments AB and CD.

Z 4
A= (0.0 ,-0.5)
B= (10.0,-0.5)
C= (10.0, 0.5) tzCD = -300 MN c
D= (0.0, 0.5) D .
A= (0.0,0.0) ’ ’
B’= (9.0,0.0)

tzaB = 300 MN

Figure 6.1: Boundary element model of a disc subjected to axial compression

The analytical solution for this problem is [89]

vr__, Z ,
u}’ B —— b I/t-.' e a— 9
2ul+v) o 2u(l+v)
c,=0, 0,=0 ¢ o,.=t (6-2)

in which 7 positive means tensile traction loads.

The problem was analyzed by a model with 43 nodes, as shown in Fig. 6.1. For
the sake of conciseness, the results are presented only for meshes of quadratic ele-
ments. However, linear elements and more discretized meshes were also employed
to check convergence of results. When a quadratic element has one extremity node
on the axis of axisymmetry and the value n, = 0 of the r-projection of the outward
normal, the symmetric configuration of the element causes the equivalent nodal
force for the node at r = 0 to be equal to zero, according to the analytical solutions
presented in Section 4.1.5.3. Then, to make possible to evaluate the submatrices
of unknown coeflicients of U*, one repositions the middle node of this element to
the coordinate r = 0.51, a perturbation sufficient to generate non-trivial equivalent
nodal forces.

Although one is dealing with a convex domain, the geometry is symmetric
in relation to a horizontal plane and, as a consequence, the basis V given in
Section 4.1.3 has zero coefficient for the r-direction at node 22, between points

B and C, as shown in Fig. 6.2. Also, the small values of V in the r-direction at
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the first and last nodes are due to their position on the axis of axisymmetry and
the value of n, = 0 on their corresponding elements. Then, this problem cannot
be dealt with in the frame of the initial proposition of Section 4.1.4. On the other
hand, one achieved good accuracy in the results by the simplified boundary element
method (SHBEM-F), thanks to the new procedure proposed in Section 4.1.5 for the
evaluation of the unknown coefficients of the matrix U*, which is no longer affected
by the behavior of the basis V.
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Figure 6.2: Basis V along the boundary ABCD

The results of displacements along the boundary are plotted in Fig. 6.3.
Displacements and stresses, given in Fig. 6.1.1, were evaluated at 10 points equally
spaced along the segment A’B’. Table 6.1 presents the global relative errors for the

displacements and stress evaluated along the boundary and in the domain.
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Figure 6.3: Displacements along the boundary ABCD
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Figure 6.4: Displacements and stresses along the segment A’B’

Table 6.1: Global errors of the results found to a disc subjected to axial compression

Error (%)
Method Along the boundary In the domain
u, u, u, u, O
BEM-F 0.00 0.01 0.00 0.01 0.00
KBEM-F 0.21 3.72 0.10 0.01 0.93
SHBEM-F 0.95 1.48 0.12 0.09 7.12

Notice that the discontinuity in the traction forces at points B and C of the
boundary cannot be correctly described by the equivalent nodal forces (which
also occurs in the frame of the displacement finite element method). Since both
the boundary and the simplified hybrid boundary element methods come from a
stiffness matrix (KBEM-F and HSBEM-F, respectively), the corresponding results
are less accurate in this example, such as for the displacements u, along the
boundary in Fig. 6.3 and stresses o, along the segment A’B’ in Fig. 6.1.1.

For this mesh, the results at the internal points shown in Fig. 6.1.1, obtained

with the Somigliana’s identity as used in the boundary element method (BEM-F),
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are not affected by the distance of the internal points to the boundary elements
(no boundary-layer effect observed). However, for the simplified-hybrid boundary
element method (SHBEM-F), the internal points are too close to the boundary for
evaluating the stresses o, directly by just applying Eq. (4-2) without a correction,
which resulted in a global relative error of 7.12%. In fact, as for the boundary
element method in the case of quasi-singular integrals that arise for points close to
the boundary [90], also in the simplified-hybrid boundary element method a specific
procedure should be employed for evaluating results at internal points close to the
boundary [46]. This technique was not applied in this work. However, one checked
that, as the mesh is refined by duplicating the number of quadratric elements, the
error for the stresses is reduced to 0.01%, of the same order of the error found for the

boundary element method (BEM-F and KBEM-F), thus using an integral statement.

6.1.2
Disc submitted to radial tensile traction

Consider the same disc presented in the previous example, submitted to a
distributed radial traction load ¢+ = 300 N/m along the boundary segment BC. The

analytical solution for this problem is [89]

(1-v)r vz
U= ————1, U, =-—-———1,
2u(l +v) ud+v)
o=t 0,=0 ¢ o0,=0 (6-3)

where 7 positive means tensile traction loads.

The problem was analyzed with the same model of the previous example,
shown in Fig. 6.5. The displacements along the boundary ABCD are shown in
Fig. 6.6. The displacements and stresses along the segment A’B’ are presented
in Fig. 6.7. Table 6.2 presents the global relative errors for the displacements and

stresses evaluated along the boundary and in the domain.
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Figure 6.5: Boundary element model for a disc submitted to radial tensile traction
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Table 6.2: Global errors of the results found for a disc subjected to radial tensile traction

Error (%)
Method Along the boundary In the domain
Uy U Uy, u; Trr
BEM-F 0.00 0.03 0.00 0.08 0.00
KBEM-F 0.26 1.78 0.22 0.00 0.24
SHBEM-F 0.22 2.96 0.09 0.00 1.35

Also in these results, one may notice a small perturbation of displacements
u, along the portion BC of the boundary, as shown in Fig. 6.6, for both methods
that make use of a stiffness matrix (KBEM-F and SHBEM-F). As in the previous
example, the global relative error of 1.35% in stresses o, for the simplified-hybrid
boundary element method (SHBEM-F) is due to the proximity of the internal points
to the boundary elements, which is not treated adequately in this work. On the other
hand, the error for displacements present good accuracy when compared to the error
for the boundary element method that makes use of a stiffness matrix (KBEM).

6.1.3
Hollow disc subjected to radial tensile traction

Consider a disc of external radius R, = 10 m, internal radius R; = 2 m,
thickness e = 1 m, shear modulus 4 = 12 MPa and Poisson’s ratio v = 0.25, as
depicted in Fig. 6.8, submitted to a distributed radial tensile traction load ¢ = —300
N/m along the boundary segment BC.
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Figure 6.8: Boundary element model of a hollow disc subjected to radial tensile traction

The analytical solution for this problem is [89]

t

U, = 1+VWRR+P(1=-v)R?
@D A+ R R+ (1 =R
VR zt
u, = —
T U - (R2-RY)
_ t 2p2 _ 2 p2
TR -R) R R - R o
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where 7 positive means tensile traction loads.

This problem was analyzed by a model with 36 nodes and quadratic elements,
as shown in Fig. 6.8. As in the previous examples, since the problem is also
symmetric in relation to a horizontal plane, the basis V given in Section 4.1.3
has zero coeflicient in the r-direction at node 18, between the points B and C, as
shown in Fig. 6.9. Moreover, as the domain is multiply-connected, the basis V also
has zero coeflicient in the r-direction at node 36, between points A and D. Again,
despite these zero coefficients, one could achieve good accuracy in the results with
the simplified boundary element method (SHBEM-F) by employing the procedure
proposed in Section 4.1.5 for the evaluation of the unknown coefficients of the

matrix U*.
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Figure 6.9: Basis V along the boundary ABCD

The results of displacement along the boundary are shown in Fig. 6.10.
Also, displacements and stresses along 7 equally spaced points along the segment
A’B’ are given in Fig. 6.11. Table 6.3 presents the global relative errors for the

displacements and stresses evaluated along the boundary and in the domain.
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Table 6.3: Global errors of the results found to a hollow disc subjected to radial tensile
traction

Error (%)
Method Along the boundary In the domain
Uy Uz Uy, U, Trr
BEM-F 0.01 0.49 0.00 0.16 0.06
KBEM-F 0.25 1.95 0.23 025 0.24
SHBEM-F 0.04 3.19 0.02 0.02 1.69

Also in these results, one may notice a small perturbation of displacements
u, along the portion BC of the boundary, as shown in Fig. 6.10, for both methods
that make use of a stiffness matrix (KBEM-F and SHBEM-F). As in the previous
example, the global relative error of 1.69% in stresses o, for the simplified-hybrid
boundary element method (SHBEM-F) are due to the proximity of the internal
points to the boundary elements, which is not treated adequately in this work. On
the other hand, the error for displacements present good accuracy when compared
to the error for the boundary element method that makes use of a stiffness matrix
(KBEM).

6.1.4
Irregularly shaped, simply-connected domain subjected to a stress field

Consider a point force p* = (py, pl) = (1,1) MN applied at the coordinates
P = (10, -5) of a boundless elastic medium with shear modulus ¢ = 10 MPa and
Poisson’s ratio v = 0.3. The displacement and stress fields produced at a point
Q = (7, ) can be evaluated by directly applying the fullspace fundamental solution

as

w; = uj} pr+ul pt (6-5)

o xfx «f %
Oij = 0y Py + Ui, P, (6-6)

sf sf
where u?, and Tim

in this elastic medium, constituting a closed axisymmetric volume that does not

are given in Section 2.2. Now, let an irregular patch be drawn

contain the force p* applied at point P, as depicted in Fig. 6.12. One can evaluate
the displacements and traction forces along the boundary ABCDEF for p* applied
as described above, according to Egs. (6-5) and (6-6). These results can be used as

target values for comparison with the numerical simulations.
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Figure 6.12: Boundary element model of an irregularly shaped, simply-connected domain
subjected to a stress field

Consider the problem of the irregularly shaped domain, depicted in
Fig. (6.12), subjected to traction forces along the boundary and prescribed displace-
ment in the z-direction at C, obtained as above outlined. One solves the problem
numerically for displacements and compares with the analytical expressions given
by Eq. (6-5).

This problem was analyzed by a model with 43 nodes and quadratic elements,
as depicted in Fig. 6.12. As in the example of Section 6.1.1, one repositions
the middle node of the boundary element that contains the point F by a small
perturbation, in order to generate nonzero equivalent nodal forces in the simplified-
hybrid boundary element method.

As in the previous example of Section 6.1.1, the small values for the coeffi-
cients of V in the r-direction at the last node are due to its position on the axis of
axisymmetry and the value of n, = 0 on its corresponding element, as shown in
Fig. 6.13. Again, despite these zero coeflicient, one could achieve great accuracy in
the results by the simplified boundary element method (SHBEM-F) by employing
the procedure proposed in Section 4.1.5 for the evaluation of the unknown coeffi-

cients of U*.
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Figure 6.13: Basis V along the boundary ABCDEF

Figure 6.14 presents the displacements along the boundary ABCDEF. Dis-
placements and stresses were evaluated at 20 nodes along the segments A’B’ and
C’D’, as shown in Fig. 6.15. Table 6.4 presents the global relative errors for the
displacements and stresses evaluated along the boundary and in the domain.
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Figure 6.14: Displacements along the boundary ABCDEF

Table 6.4: Global errors of the results found for an irregularly shaped, simply-connected
domain subjected to a stress field

Error (%)
Method Along the boundary In the domain
uy u, uy u, Oy Oy O
BEM-F 0.57 0.36 0.05 031 030 041 0.15
KBEM-F 043 0.22 0.09 0.15 0.16 0.69 0.17

SHBEM-F 0.33 0.23 0.16 0.02 1.60 13.77 0.81
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The numerical and analytical results present good agreement. As in the

previous example, the global relative error of the stress o, in Fig. 6.15 and Table 6.4
for the simplified-hybrid boundary element method (SHBEM-F) is due to the

proximity of the internal point B’ to the boundary elements, which is not treated

adequately in this work. On the other hand, the error for displacements present

good accuracy when compared to the error for the boundary element method that
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makes use of a stiffness matrix (KBEM).

6.1.5
Irregularly shaped, hollow multiply-connected domain subjected to a
stress field

Consider the same boundless elastic medium of the previous example, sub-
jected to a point force p* = (py, p2) = (1, 1) applied at the coordinates P = (10, -5).
Now, let an irregular patch be drawn in this elastic medium, as depicted in Fig.6.16,
constituting a closed axisymmetric domain that does not contain the force p* ap-
plied at point P. As in the previous example, one can evaluate the displacements
and traction forces along the boundary ABCDEFA by Egs. (6-5) and (6-6) and use

them as target values for comparison with the numerical simulations.

Z 4

A= (2.0,0.0)
B’= (5.0, 8.0)
C’= (2.0, 8.0)
D’ = (6.0, 3.0)

Figure 6.16: Boundary element model of an irregularly shaped, hollow multiply-connected
domain subjected to a stress field

Consider the problem of an irregularly shaped domain, depicted in Fig. 6.16,
subjected to traction forces along the boundary and prescribed displacement in
the z-direction at C, obtained as above outlined. Again, one solves the problem
numerically for displacements and compares with the analytical expressions given
by Eq. (6-5).

This problem was analyzed by a model with 64 nodes and quadratic elements,
as depicted in Fig. 6.16. One may notice in Fig. 6.17 that the basis V given in
Section 4.1.3 has coeflicients of small values in the r-direction at the nodes between
points A and F, which is consistent with the fact the domain is multiply connected.
Again, despite such small coefficients, one could achieve good accuracy in the

results with the simplified boundary element method (SHBEM-F) by employing the
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procedure proposed in Section 4.1.5 for the evaluation of the unknown coeflicients
of U™.
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Figure 6.17: Basis V along the boundary ABCDEFA
Figure 6.18 presents the displacements along the boundary ABCDEFA. Dis-
placements and stresses were evaluated at 20 points along the segment A’B’ and

C’D’, as shown in Fig. 6.19. Table 6.5 presents the global relative errors for the
displacements and stresses evaluated along the boundary and in the domain.
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Figure 6.18: Displacements along the boundary ABCDEFA
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Table 6.5: Global errors of the results found for an irregularly shaped, hollow multiply-
connected domain subjected to a stress field

Error (%)
Method Along the boundary In the domain
U, u, u, u, Oy  Op O
BEM-F 0.57 0.29 0.10 042 0.12 0.75 0.10
KBEM-F 0.52 0.21 0.13 021 022 155 0.11
SHBEM-F 1.53 0.12 0.04 0.12 2.07 23.28 1.82

The numerical and analytical results present good agreement. As in the
previous examples, the global relative error of stresses o, in Fig. 6.19 and Table 6.5
for the simplified-hybrid boundary element method (SHBEM-F) is due to the
proximity of the internal points A’and B’ to the boundary elements, which is not
treated adequately in this work. The error for displacements present good accuracy
when compared to the error for the boundary element method that makes use of a
stiffness matrix (KBEM).

6.2
Problems in an infinite medium

6.2.1
Irregularly shaped, simply-connected cavity subjected to a stress field

In a similar manner to the examples presented in sections 6.1.4 and 6.1.5,
consider the force p* = (p;, pZ) = (1,1) MN applied at a point P = (3, -5) in the
same boundless elastic medium of the previous example. Now, consider the problem
of an irregularly shaped cavity, depicted in Fig. (6.20), subjected to traction forces
along the boundary and prescribed displacement in the z-direction at C, obtained by
Egs. (6-5) and (6-6) for the appliced forces p*. One solves the problem numerically
for displacements and compares with the analytical results given by Eq. (6-5).

The problem was analyzed by a model with 43 nodes and quadratic elements,
as depicted in Fig. 6.20. One might obtains the unknown values of U* for the finite,
complementary domain, exactly as procedded for the example of Section 6.1.4.
However, the same problems reported with reference to the basis V would appear.
Since the procedure proposed in Section 4.1.5 for the evaluation of the unknown
coeflicients of matrix U* does not depend on the basis V, one could achieve good

accuracy in the results with the simplified boundary element method (SHBEM-F).
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Figure 6.20: Boundary element model of an irregularly shaped, simply-connected cavity
subjected to a stress field

The displacements along the boundary ABCDEF are presented in Fig. 6.21.

Displacements and stresses were evaluated at 20 internal points along the segments
A’B’ and C’D’, as shown in Fig. 6.22. Table 6.6 presents the global relative

errors for the displacements and stresses evaluated along the boundary and in

the domain. All the numerical results present excellent agreement with analytical

results. Notice that, for this example, all the internal points are located far enough

from the boundary elements and the errors for displacements and stresses obtained

by the simplified-hybrid boundary element method (SHBEM-F) present very good

accuracy.
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Figure 6.21: Displacements along the boundary ABCDEF
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Figure 6.22: Displacements and stresses along the segments A’B’ and C’D’
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Table 6.6: Global errors of the results found for an irregular simply-connected cavity
subjected to a stress field

Error (%)
Method Along the boundary In the domain
u, u, u, u, O, Oy O
BEM-F 0.07 0.01 0.01 0.00 0.01 0.01 o0.01
KBEM-F 0.26 0.12 0.01 0.00 0.02 0.02 0.08
SHBEM-F 0.52 0.38 0.02 0.00 0.03 0.02 0.07

6.2.2
Irregularly shaped, multiply-connected cavity subjected to a stress field

In a similar manner to the previous example, consider the force p* = (1,1)
MN applied at a point P = (4,5) in the same elastic medium. Now, consider
the problem of an irregularly shaped cavity, depicted in Fig. (6.23), subjected to
traction forces along the boundary and prescribed displacement in the z-direction at
C, obtained by Egs. (6-5) and (6-6). Once more, one solves the problem numerically
for displacements along the boundary ABCDEF and compares with the analytical
results given by Eq. (6-5).
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C= (5.0, 9.0) C’= (10.0, 8.0)
D= (8.0, 5.0) D’ = (14.0, 3.0)
A E= (8.0, 2.0)
F= (4.0, 2.0)

Figure 6.23: Boundary element model of an irregularly-shaped multiply-connected cavity
subjected to a stress field

The problem was analyzed using a model with 64 nodes and quadratic
elements, as depicted in Fig. 6.23. As in the previous example, the body is a non-

convex domain with disconnected surfaces. The basis V given in Section 4.1.3,
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found for the complementary domain, presents the issues reported for the example
of Section 6.1.5. Since the procedure proposed in Section 4.1.5 for the evaluation
of the unknown coefficients of U* does not depend on the basis V, one could
achieve good accuracy of the results using the simplified boundary element method
(SHBEM-F).

Results along the boundary ABCDEFA and at 20 equally spaced points along
the segments A’B’ and C’D’ are presented in Figs. 6.24 and 6.25, repectively.
Table 6.7 presents the global relative errors for the displacements and stresses
evaluated along the boundary and in the domain. All the numerical results present
excellent agreement with analytical expressions. Notice that, for this example, all
the internal points are located far enough from the boundary elements and the errors
for displacements and stresses obtained by the simplified-hybrid boundary element
method (SHBEM-F) present very good accuracy.

Error (%)
Method Along the boundary In the domain
u, u, uy u, Oy Oy O
BEM-F 0.09 0.01 0.01 0.00 0.01 0.01 0.01
KBEM-F 0.36 0.14 0.01 0.00 0.02 0.01 0.05
SHBEM-F 0.42 0.07 0.02 0.00 0.03 0.01 0.06

Table 6.7: Global errors of the results found for an irregularly-shaped, multiply-connected
cavity subjected to a stress field
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Figure 6.24: Displacements along the boundary ABCDEFA
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Figure 6.25: Displacements and stresses along the segments A’B’ and C’D’
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6.3
Problems in the halfspace

6.3.1
Halfspace subjected to a compressive load on the surface

Fig. 6.26 illustrates the halfspace z < 0 with unitary shear modulus and
Poisson’s ratio v = 0.25, submitted to a uniform compressive load on a circle of
radius R = 5m. The analytical expressions for the vertical displacement and axial

stress can be found in Selvadurai [91] and Milovic [92] as

R
u, = p2_,u [2(1 = v) Lio-1(R, r;2) + 2 L10o(R, 13 2)] (6-7)
n n?+ -1 1—¢
= A - Ek) + —Ily(k, 6-8
7 ”{ TR I U e Q)]} oo
in which
Z r ) 4t 4t
= —, [:—, k = —=— = — 6—
"R R 2+a+12 1T avy 6-9)
1 if r<R
A=41/2 if r=R (6-10)
0 if r>R

where p is the uniform pressure and the z-axis is positive in the downward direction.

A= (5.0, 0.0) A= (50, 00)
. B= (0.0, 0.0) B’= (30.0, 0.0)
C’= (1.0, 1.0
tzaB=-1 N D’= (30.0, 30.0)
B A . 7.
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\'\
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e
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Figure 6.26: Boundary element model of a halfspace subjected to uniform pressure on a
circular surface

This problem was analyzed using a model with 7 nodes and quadratic el-
ements, as depicted in Fig. 6.26. The displacements along the boundary AB are
shown in Fig. 6.27. The displacement u, and the stress component o-,, were evalu-

ated at 9 and 14 points equally spaced along the segments A’B’ and C’D’, respec-
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tively, and are shown in Fig. 6.27. Table 6.8 presents the global relative errors for
the displacements and stresses evaluated along the boundary and in the domain. All
the numerical results present good agreement with analytical expressions. The prob-
lem was not solved in terms of a stiffness matrix derived from the simplified-hybrid
boundary element method, since the analytical solutions for the halfspace problem
as still not available, as presented in Section 4.2.

Actually, the solution of the present problem, with Neumann boundary condi-
tions, is a trivial one in the frame of the hybrid boundary element method, since only
the solution of Eq. (4-14) for p* is required. Then, all results at internal points would
be immediately available, with the best possible accuracy among all boundary el-
ement methods, since only approximations related to the matrix H are assumed in
the numerical simulation.
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Figure 6.27: Displacements and stresses along the boundary AB and along the segments
A’B’ and C’'D
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Table 6.8: Global errors of the results found for a halfspace subjected to compressive load
along a circular surface

Error (%)
Method Along the boundary In the domain
u, u, u, u, oy
BEM-H 0.00 0.00 0.00 0.00 0.00
KBEM-H 0.45 0.00 0.00 0.00 0.00

6.3.2
Irregularly shaped, simply-connected cavity subjected to a stress field

Consider a point force p* = (1, 1) MN applied at the coordinates P = (3, —5)
of an elastic halfspace of shear modulus ¢ = 10 MPa and Poisson’s ratio v = 0.3.
The displacement and the stress fields produced at any point Q = (r,z) can be
evaluated by directly applying the halfspace fundamental solution

W= up pr+ul p (6-11)

oij = o'l*]hr p,+ ulxj]i p: (6-12)

where " and oj*}‘m are given in Section 2.3. Now, let an irregular patch be drawn in
this elastic medium, constituting a cavity that does not enclose the force p* applied
at point P, as illustrated in Fig.6.28. From Eq. (6-12), one can evaluate the load
along the boundary ABCDEF due to p* as described above. These results can be

used as target values for comparison with the numerical simulations.
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Figure 6.28: Boundary element model of an irregularly shaped, simply-connected cavity
subjected to a stress field

Consider the problem of the irregularly shaped cavity, shown in Fig. 6.28,
subjected to traction forces along the boundary, as caused by the source p*. One
solves the problem numerically for displacements and compares with the analytical
expressions given by Eq. 6-11.

This problem was analyzed by a model with 43 nodes and quadratic elements,
as depicted in Fig. 6.28. The displacements along the boundary ABCDEF are shown
in Fig. 6.30. The displacements and stresses evaluated at 20 internal points along
the segments A’B’ and C’D’ are presented in Fig. 6.29. Table 6.8 presents the global
relative errors for the displacements and stresses evaluated along the boundary and
in the domain. All the numerical results present good agreement with the analytical
results.

As in the previous example, the problem was not solved in terms of a stiffness
matrix derived from the simplified-hybrid boundary element method, since the
analytical solutions for the halfspace problem as still not available, as presented in
Section 4.2. Actually, the solution of the present problem, with Neumann boundary
conditions, is a trivial one in the frame of the hybrid boundary element method,
since only the solution of Eq. (4-14) for p* is required. Then, all results at internal
points would be immediately available, with the best possible accuracy among all
boundary element methods, since only approximations related to the matrix H are

assumed in the numerical simulation.
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Figure 6.29: Displacements and stresses along the segments A’B’ and C’D’
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Figure 6.30: Displacements along the boundary ABCDEF

Table 6.9: Global errors of the results found for an irregularly shaped, simply-connected
cavity subjected to a stress field

Error (%)
Method Along the boundary In the domain
uy u, Uy u, Op Oy O
BEM-H 1.17 0.35 0.06 1.06 045 045 048
KBEM-H 0.95 0.18 003 084 035 035 033

SHBEM-H  — - 0.00 0.03 0.01 0.01 0.02




