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4
The simplified-hybrid boundary element method for axisym-
metric elasticity

The simplified-hybrid boundary element method [51, 52] was proposed about
one decade ago as a simplified version of the variationally-based, hybrid boundary
element method [42, 43]. However, this formulation can be derived independently
on the basis of a virtual work statement and a nodal displacement compatibility
equation, which is the approach adopted in the following chapter.

Since its original formulation, the simplified-hybrid boundary element
method has undergone some slight, although relevant, conceptual improvements,
which helped to elucidate the theoretical aspects of the method and increase the
range of applications. However, some topological features that are inherent to ax-
isymmetric problems have been at first seen as untractable in the proposed varia-
tional framework.

This chapter basically presents a new theoretical development that has made
possible the application of the simplified-hybrid boundary element method to
axisymmetric problems [60], as well. New improvements provide the definitive
answer to some conceptual issues that had been identified, but not solved, since
the onset of the method. The key contribution is the development of a hybrid virtual
work statement to arrive at a contragradient theorem that opens up the possibility of
application of the method to problems of any topology.

In the next sections, one firstly presents the simplified-hybrid boundary el-
ement method, as originally proposed [51, 52] and particularized to axisymmet-
ric problems, showing why some undetermined coefficients cannot be resolved for
some geometry configurations. Then, one introduces the above-mentioned hybrid
virtual work statement, that subtly, but definitely, turns the method completely ap-
plicable.

41
Formulation for the axisymmetric fullspace problem

411
Approximation of displacements and tractions

Let an axisymmetric body be submitted to body forces b; in €, traction
forces 7; on T, and prescribed displacements i; on I',, as depicted in Fig. 4.1.

One is looking for an approximation of displacements u; along I',. and of traction
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forces t; along I', that best satisfy the equilibrium equations in the domain Q.
In the simplified-hybrid boundary element method, the displacement and stress
fields are approximated by two independent trial fields, namely displacements u;
on the boundary I" and stresses o;; in the domain £, according to the methodology
proposed by Pian [44].

Then, displacements are approximated along the boundary I" by

U; = Uy, U, where n=1,n, 4-1)

in which u, are nodal values and u;, are interpolation functions with compact
support. The boundary is discretized in terms of n, segments I', with a total of n,
nodes, in the frame of an isoparametric formulation, as in the conventional boundary
element method.

In the domain, the stress field is approximated by a series of fundamental
solutions — as homogeneous solutions of the equilibrium differential equation of
the problem — plus some arbitrary particular solution that takes the applied body
forces int account. In the present case, the fundamental solutions are obtained by
applying ring sources of intensity p;, at each node and coordinate direction, as
already outlined in Section 3.1.1. Then, the homogeneous part of the stresses at

any point Q(r, z) in the domain € is given by

o (Q) = 7},(Q,P) p;,(P) (4-2)

sf
where o Him

point P(¢,7") and the direction at which the load is applied; the subscripts ij refer

is the fullspace fundamental solution. The index m indicates both the

to the components stresses, as measured at Q(r, z). One also obtains from the stress

field a displacement field whose homogeneous part is
1;(Q) = ;,(Q.P) p),(P) + ¢] (4-3)

where 1! is the corresponding displacement fundamental solution for the fullspace
and and ¢! are in principle arbitrary rigid body constants. For axisymmetric prob-
lems, the only possible rigid body motion is translation in the z-direction, formally
given by

¢; = u;(Q) Cu(P) p,,,(P) (4-4)

where C), are in principle arbitrary constants and u are the rigid body displacements

0
M=[WJ 4-5)
n

n
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where 7, is the number of nodes. These interpolation functions are normalized in
such a way that, if one takes Q(r, z) to the boundary, their values coincide with the

orthonormal basis of rigid body displacements W = [W,,] € R™

12 (4-6)

0 if m refers to r-direction
W, = _ . ) .
n, if m refers to z-direction

The above definition is adopted for the sake of simplicity, as WWT is an orthogonal
projector.

The rigid body displacement constants C,, — in principle arbitrary — are
evaluated in due time, as shown in two different circumstances in Sections 4.1.2.2
and 4.1.4.1.

NV

(a)

Figure 4.1: Meridian plane of an elastic axisymmetric body submitted to body forces,
traction forces and prescribed displacements

4.1.2
Governing matrix equation

4.1.21
Displacement virtual work for nodal equilibrium checking

One states the following displacement virtual work principle to check equi-

librium of forces in the elastic body illustrated in Fig. 4.1:

fg*:dngzflg-éde+fg-6gdl" 4-7)
o) o) r

where ou are virtual displacements such that 6u = 0 along I',. Assuming that the
stress tensor ¢ is symmetric and considering Eq. (2-2), one may rewrite the first

integral above as

f g’ :6edQ = f o : (Véu) dQ (4-8)
Q Q
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which, after integration by parts, leads to

fg*:6§dQ=fy-(g*-éy)dﬂ—fy-g*~6ydﬂ (4-9)
Q Q Q

Applying the divergence theorem and substituting for Eq. (2-19), the first integral
in Eq. (4-7) yields

fg*:5SdQ:fl*'d’!dr—fY'g*-dde (4-10)
Q r Q

For the sake of simplicity, one shall assume in the following developments that

body forces are absent. The above relation can be substituted into Eq. (4-7), which

fg*-agdr—fy-g*-agdgzfg-agdr 4-11)
T Q T

Approximating the stresses ¢ in the domain according to Eq. (4-2), as well as the

becomes

displacements u; on the boundary according to Eq. (4-1), and applying the property
of the fundamental solution given by Eq. (2-77), one obtains, in indicial notation,

Oty ( f 6(Q P);n(Q) T + 5, um(Q)) pu(P) = ou, f 1(Q) uin(Q)dl'  (4-12)
r r

One identifies the last integral as the expression of equivalent nodal forces, as

already given in Eq. (3-18), thus arriving at

Sty ( f 6m(Q, P) 1in(Q) dT + 5, um(Q)) pu(P) = 6u, py (4-13)
r

Considering 67, u;,(Q) = u,,,(Q) = ¢’ and the boundary dI" given as in Eq. (3-5),

m mn

one obtains for any ou, and after integration over 6,
Hyypy=py or H' P =p (4-14)
in which
H,, =2n fr Q. P)uin(Q) rdI(r,2) + 8}, = Hyy + €5, (4-15)

in terms of the Cauchy principal value of the singular integral

H,y, =27 f 1(Q, P) u;,(Q) rdI'(r, 2) (4-16)
r

The discontinuous part of the singular integral in Eq. (4-14) is included in the

constants ¢¢ , as outlined in Section 3.1.5. Then, the matrix H = [H,,,] € R™*™

mn’
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expressed in Eq. (4-15) is the same one of the boundary element method, introduced
in the previous chapter. In Eq. (4-14), the matrix H' transforms forces p* = [p,] €
R™ of the auxiliary system into the nodal equivalent forces p = [p,] € R"™.

The external reference system (u, p), with nodal displacements u introduced
in Eq. (4-1) and equivalent nodal forces p obtained in the frame of the virtual
work statement that has led to Eq. (4-14), provides the numerical approximation
of the actions along the boundary of the elastic body. The internal reference
system (u*, p*) approximates stresses in the domain in terms of point forces p*,
to which correspond equivalent nodal displacements u*, defined in the following
contragradient statement.

In fact, one may write the virtual work statement
op*Tu* = 6pTu 4-17)

for virtual forces op* and op that are in equilibrium. Substituting for op according
to Eq. (4-14), one obtains
Hu=u" (4-18)

This equation is also integrant part of the variationally-based hybrid boundary
element method and might be inferred in the frame of the conventional boundary
element method [43].

41.2.2
Nodal displacement compatibility

Equation (4-3), which approximates the displacements u{ in the domain €, is
also valid at the boundary nodal points, as obtained in the frame of the variational
hybrid boundary element method [43]. Therefore, applying Eqgs. (4-3) and (4-4) to
each node leads to

u, =WU,,+W,C,)p, or u=U+WC)p" 4-19)

nm

where W = [W,] € R™ is the orthonormal basis of the rigid body displacements
given by Eq. (4-6) and C = [C,,] € R"™ are constants to be obtained in the following
steps. In the above expression, the interpolation functions u! are normalized accord-
ing to Eq. (4-5). The index m refers both to the point P(¢,z") at which the load is
applied and to the application direction, while the index n refers both to the point
Q(r, z) at which the displacement is evaluated and to the coordinate direction.

In Eq. (4-19), U* = [U,,,] € R™ is a matrix with coefficients given as the

displacements ! (Q, P) measured at the degrees of freedom n. The displacements

m
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sf
im

however, the corresponding coefficients of U*, if expressed from Eq. (4-3), are

u; (Q,P) tend to infinity when m and n refer to the same node. In such a case,
actually undetermined, as they would refer to a point that is outside the domain
of interest 2, although at only an infinitesimal distance. Developing a generally
valid procedure to evaluate such coefficients of U* is the key issue of the hybrid
boundary element methods (no matter which version one is using [43]), as dealt in
Section 4.1.4. Regardless the fact that these coefficients have not yet been evaluated,
one may proceed with the present developments. By construction, U}, = U;,, when
m and n refer to different nodes. However, no symmetry properties can in principle
— and also ultimately — be derived for the submatrices about the main diagonal of
U~

Pre-multiplying Eq. (4-19) by WT and using the property WI'W = 1, one
solves for the product C p* in a least-squares sense:

Cp =W'u-Up) (4-20)

Substituting the above expression into Eq. (4-19) leads to

P, U'p*=Pyu (4-21)

where
Py, =1-Py (4-22)
Py = WWT (4-23)

in which Py is the orthogonal projector that spans the space of rigid body dis-
placements and Py, its complementary projector. The matrix Py, U* in Eq. (4-21) is

singular and transforms forces of the auxiliary system p* into displacements u.

41.3
Properties of the orthogonal bases W, V, A

Equations (4-14) and (4-21) transform forces and displacements, respectively,
between two different approximation reference systems, as proposed in Section
4.1.1.

For axisymmetric problems in the fullspace, there is a basis W = [W,,] € R*
of rigid body displacements in the z-direction, whose orthogonal projectors Py and
P;, are expressed in Eqs. (4-23) and (4-22), respectively. The basis W spans the
nullspace of H, since rigid body displacements are not transformed by Eq. (4-18),
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1.e.,
HW=0 (4-24)

This orthogonal basis depends only on the geometry of the problem, as expressed
by Eq. (4-6). The orthogonality relation in the equation above can be used to
circumvent the numerical evaluation of the singular integrals of H, for coeflicients
about the main diagonal, as presented in Chapter 5.

On the other hand, one obtains from Eq. (4-24) that there isabasis V =[V,,] €
R“ that spans the nullspace of HT,

H'V=0 (4-25)

which is also the basis of inadmissible, unbalanced forces p* that cannot be trans-
formed in Eq. (4-14). The corresponding orthogonal projector and complementary

orthogonal projector are, for V used as an orthonormal matrix,

Py =VVT (4-26)
P, =1-Py (4-27)

Both p* and p are forces that act in the same direction at the same nodal
points and can perform virtual work on the same set of nodal displacements. As a
consequence, VTW, as a non-normalized basis V of unbalanced forces p’, can be

projected onto the space spanned by W of unbalanced forces p:

PyV=W (4-28)
This equation leads together with Eq. (4-25) to
H +Py) V=W (4-29)

where (HT + Py) is by definition non-singular. Equation above is an expedite linear
algebra means to find the nullspace of H'.

Equations (4-24) and (4-25) are consistent, since

Wip=0 (4-30)
Viu =0 (4-31)

Spectral relations of U* can be derived from the mechanical interpretation that

unbalanced forces spanned by the bases V and W cannot reproduce displacements
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in Egs. (4-21) and (4-59),

PLUV=0 (4-32)
PLU) W=0 (4-33)

Equation (4-32) might be sought as a means to evaluate the elements about the main
diagonal of U*. In fact, this equation is a necessary condition for U*, whenever the
elastic body can undergo rigid body displacements, but a not sufficient one, as Py, U*
is singular by construction. The spectral condition represented by Eq. (4-32) will be
proven consistent with the developments of Section 4.1.5.

For axisymmetric problems, another important basis is A = [A;,] € R,
similar to the one introduced in Section 3.1.4.1 but this time redefined for n,
columns, that reflects the fact that radial loads on the axis of axisymmetry generate
no displacements. Let n, be the number of nodes along the boundary on the axis of
axisymmetry. For each node i at which & = 0 one expresses the orthonormal basis
A as

A = { 1 if m refers to node i and the r-direction (4-34)

0 otherwise

The orthogonal projector P4 of the space of the radial loads on the axis of axisym-

metry and its complementary projector P, are

Py=AA" (4-35)
PL=1-P, (4-36)

The basis A describes the subset of radial loads that are applied on the axis of
axisymmetry and that cannot generate any displacements (except for axial rigid
body displacements). It equally represents point forces p* and equivalent nodal

forces p. This can be checked for the equilibrium Eq. (4-14):

H' A=A (4-37)
Also, since W refers to the axial direction and A to the radial direction,

W'A =0 (4-38)

Since the basis A of radial loads on the axis of axisymmetry generates no displace-

ments in Eq. (4-21), and considering Eq. (4-38), one obtains

U'A=0 (4-39)
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Understanding the mechanical meaning of the spectral spaces spanned by W, V
and A is a key step in the conceptual completion of the simplified-hybrid boundary
element method, including the evaluation of the coefficients about the main diagonal
of U* and the manipulation of some generalized inverse matrices.

The next section outlines how the coefficients about the main diagonal of
U”* can be evaluated, for the axisymmetric fullspace problem, using the procedure
originally proposed in the simplified-hybrid boundary element method [50]. As it is
shown, there are some topological problems that cannot be overcome in the frame
of the original proposition. On the other hand, Section 4.1.5 introduces a novel
formulation that renders the simplified-hybrid boundary element method applicable
to any kind of geometry configuration, which is one of the major contributions of

the present work.

41.4
Evaluation of the coefficients about the main diagonal of U* as in the
original proposition of the simplified-hybrid boundary element method

As mentioned in Section 4.1.5.1, U* = [U?, ] € R*** is a matrix obtained by

nm

measuring displacements u;; (Q, P) at the degrees of freedom n. When m and n refer
to the same node, i.e. the points P(¢, z") and Q(r, z) coincide (p = 0), the functions
u’;(Q, P) is actually not infinity, but indeterminate, as they would refer to a point that

is outside the domain of interest Q. Therefore, a series of two by two submatrices

along the main diagonal of U}

»m Mmust be evaluated by some mechanically-based

linear algebra means. The following outline is based on the fact that inadmissible
forces p*, thus spanned by the basis V, cannot generate an equilibrated stress state
in the body.

41.41
Evaluation of rigid body displacement constants comprised in a plain state
of deformation

The rigid body displacement constants C,, introduced in Eq. (4-3) can be
evaluated, for a static problem, by imposing that only a plain deformation state
be represented by this equation. It means that the total displacements u:(Q), as
caused by p; (P), should be orthogonal to any rigid body displacement amount
G = u. C p,, measured either in the whole domain or along the boundary [58].

In the following developments, one imposes as orthogonality criterion that

f u; &dlC =21 f u; &;rdl(r,2) =0 (4-40)
r r
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in which I'(7, z) is the boundary of the meridian plane of the axisymmetric body.

Substituting for u: according to Eqs. (4-3) and (4-4), one obtains for any p;,

f (ujy, + ul Cp)u} rdl(r,z) =0 (4-41)
T

Defining C* = [C},] € R™ and the scalar C" as

m

C: = f W ul rdl(r,z) = n,'? f iy, rdl(r,2) (4-42)
r

r

C = f wiul rdl(r,z) = n," & (4-43)
r

one solves for C = [C,,] € R™ as

C=- (4-44)

Cr
where 27 {r = j_ rdI'(r, z) is the surface of the axisymmetric body. Equation (4-5)
and Eqgs. (4-42) to (4-44) can be substituted into Eq. (4-4) to derive the amount
of rigid body displacements they must be included in Eq. (4-3) so that only

displacements related to a plain deformation state are induced by p*:

. 0
¢ = P of (4-45)
7 Jul,r dI'(r, z)

41.4.2
A nodal displacement compatibility statement

Since unbalanced forces of the auxiliary system p*, thus spanned by the basis

V, should not reproduce any admissible state of displacements in Eq. (4-19),
U +WO V=0 (4-46)

for the matrix C of rigid body displacements evaluated according to Eq. (4-44). Let
U” be split into two parts,
U =U;, + 0 (4-47)

where Uy, corresponds to U, for m and n referring to different nodes and zero
values for the coefficients about the main diagonal;, and Uy a block-diagonal

matrix with a series of two by two submatrices constituted by the still unevaluated
coefficients of U*. Then, from Eqgs. (4-46) and (4-47),

U,V=-WCV-U,V=Y, (4-48)
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which leads to a series of n, two by two equations for each node i of the boundary:

Vi Yo :
[ ”):( 0”) i=1,.n, (4-49)
A Ve ), g ),

For each node on the boundary, the above equation yields two equations to

[ Upen Upen
UD (rz) UD (z2)

solve for the four unknowns of Uj. Then, differently from the cases of two and
three-dimensional problems of potential and elasticity in which symmetries are not
included, in the present case of axisymmetry the orthogonality Eq. (4-46) is not
sufficient to evaluate all undetermined coefficients of Uj. It is worth noticing that
@ = Up .y I Eq. (4-49).

On the other hand, additional equations can be obtained by applying

there is no mechanical justification to assume that U7,

Eq. (4-19) to check for some of the simplest axisymmetric analytical solutions pos-
sible, exactly as in the displacement finite element method, when one requires that
a formulation passes a patch test. Let U = [U,,] € R* and P = [P,] € R* be dis-
placements and nodal forces corresponding to a known analytical solution. Then, a
vector of forces P* = [P},] € R" of the internal reference system can be evaluated
from Eq. (4-14) as

P =HHP (4-50)

in which inverse (H")? stands for a generaliszed inverse [75], since H is singular,
as dealt with in Section 4.1.7.1. Now, applying the solution (U, P*) to Eq. (4-19)
yields

U'+WOP =U (4-51)

Finally, the coefficients of Uj, may be expressed as
UyP'=-WCP' -U,P'=Y (4-52)
which can be written as a set of n, uncoupled systems of equation for each node i

P Yo
[ ® ) :( ) ) i=1,..,n, (4-53)
; P(Z) ; Y(Z) i

of the boundary:

* *
[ UD(rr) UD(zr)

UD (rz) Ub (z2)

Combining Egs. (4-49) and (4-53), one obtains the following system of

equations,
l Vir) V(:) [ U;:)(”,) UZ)(rZ) ) _ [ Yoy | Yoo ) i= 1., (4-54)
P(r) P(Z) i UD (zr) UD(zz) i Yoy | Yo

which can be solved for the submatrices of Uy, provided that the expressions from
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Eqgs. (4-46) and (4-51) are linearly independent for all boundary nodes (that is, the
matrix of system above is non-singular for all i). Since this cannot be guaranteed
for any geometric configuration of the boundary, a first improvement is to resort
to one more simple analytical solution (they are given in Section 4.1.5.3), with a
superabundant number of equations at each node, thus solving for Uy in terms of
least squares.

However, as it came out in the numerical tests run with the present implemen-
tation and has already been observed in several applications of the hybrid boundary
element method [59], there are some specific topological configurations for which,
at some given nodes, either V,, or V; in Eq. (4-49) is equal to zero (within some
discretization error), and the corresponding value of PZ‘r) or PZ‘Z) in Eq. (4-49) is also
approximately zero, no matter which analytical solution one resorts to. This fact
had astonished the researchers involved with the hybrid boundary element method
for many years, until a sound mechanical justification for the problem could be
identified and means to circumvent the difficulties satisfactorily developed [60]. In
fact, the procedure just outlined is only generally applicable to an elastic body with
strictly convex geometry [43].

For three-dimensional axisymmetric elasticity, the above described behavior
1s identified for four types of topological configuration, as shown in Fig. 4.2. If the
volume of the solid is convex (and non-symmetric with reference to a horizontal
plane), as in Fig. 4.2—a, V,, # O for all m and the procedure just outlined can be
used. However, in all other cases shown in Fig. 4.2 there are nodes on the boundary
where V,, ~ 0 (sometimes, V,, = 0).

If the body is non-convex with either simply-connected (Fig. 4.2-b) or
multiply-connected surface (in Fig. 4.2-b, V,, approaches zero along a sequence of
boundary nodes. On the other hand, if the volume is non-convex with disconnected
surfaces, as in Fig. 4.2—d, V,, = 0 on the internal, disconnected parts of the bound-
ary. The last case, Fig. 4.2—e, refers to the existence of symmetry of the discretized
boundary, with V,, = 0 at the node(s) on the axis of axisymmetry even for convex
volumes. The latter example is in fact the case of a not strictly convex geometry, as
it also happens in the numerical simulation of a continuum with non-homogeneous
properties [59, 84].
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Figure 4.2: Meridian planes of an elastic axisymmetric: a) convex volume; b) non-convex
volume with simply-connected surface; c¢) non-convex volume with multiply-connected
surface; d) non-convex volume with disconnected surfaces; e) convex volume with a
horizontal plane of symmetry.

As already mentioned, similar cases have been identified for potential and
two-dimensional elasticity problems. In the case of a non-convex volume with dis-
connected surfaces, the coeflicients of the submatrices of U} can be obtained by
dealing with each disconnected surface separately and then composing the whole
problem by superposition of effects. In some cases, the unknown values of Uy, cor-
responding to (approximately) zero values of V,, can be evaluated by interpolating
the adjacent coefficients of U*. Although successful for some cases, such are ad
hoc procedures and there is no evidence of their general applicability [52]. In fact,
as exhaustively investigated, the procedure outlined above cannot be applied to the
topologically demanding subject of the present work.

Fortunately, the challenging problem posed by the cases depicted in Fig. 4.2
is satisfactorily solved by means of a novel mechanical concept introduced in the
next Section, as shown in the numerical examples of Chapter 6.
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41.5
Evaluation of the coefficients about the main diagonal of U* using a hybrid
contragradient theorem

Equations (4-14) and (4-21) constitute the governing equations of the original
version of the simplified-hybrid boundary element method [52]. An additional
governing equation that may successfully substitute for (4-21) can be derived by

applying a contragradient theorem, as detailed in the following.

41.5.1
A hybrid virtual work statement

As introduced in Section 4.1.2, u and p* are the primary unknowns of the
problem, to which correspond equivalent nodal forces and displacements p and
u*, respectively. At present, one is attempting to find an expression that directly
interrelates the equivalent nodal quantities p and u*. For this sake, let an admissible,
virtual stress state be represented by Py,6p* and Py,éu, which are interrelated by
Eq. (4-21). This virtual state is admissible because the contribution of unbalanced
forces Pyop* and rigid body displacements Pwou is excluded. For consistency,
ou = 0 on I',, but the inclusion of boundary conditions may be postponed. The
virtual energy 6U(u) related to the pair (P5,0u, p) and the complementary virtual
energy U (p*) related to the pair (u*, Pyop*), are given by

sU(u) = 6u'P;; p (4-55)
sUC(p*) = op”"Py u”* (4-56)

For linear elastic deformation, U(u) and U (p*) are equivalent. Then,
su'Py, p = op'Pyu’ (4-57)
Substituting for 6u’ P§;, according to Eq. (4-21), one obtains
spTUT Py, p = op T Pyu’ (4-58)

an expression that is valid for any virtual set of point forces op* (not just the

admissible ones), thus resulting
UTPy; p=Puu’ (4-59)

This might be the final expression one is looking for. However, resorting to another

contragradient expression, Eq. (4-18), and also to Eq. (4-25), it is possible to arrive
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at a more convenient equation,
UTPyp=Hu (4-60)

that explicitly relates nodal displacements and equivalent nodal forces without the
intervenience of the auxiliary set of forces p*, as originally proposed in terms of
Eqgs. (4-14) and (4-21). The construction of a stiffness relation from Eq. (4-60) is
addressed in Section 4.1.6.

4.1.5.2
A contragradient nodal displacement compatibility statement

The derivation of a new governing equation, as presented in Section 4.1.5.1 by
applying a hybrid contragradient theorem, was motivated by the need of an equation
that allowed the evaluation of the unknown coefficients Up of U*, as laid down in
Eq. (4-47), regardless topological issues.

As in the previous section, let U and P be the displacement and equivalent
nodal force vectors that correspond to some simple analytical solution. Applying

this solution to Eq. (4-60), one obtains
UTP=HU (4-61)

since Py, P = 0, according to Eq. (4-30). It is worth noticing that this equation
is contragradient to Eq. (4-51), thus establishing that the evaluation of equivalent
nodal displacements u* should lead to the same result whether starting from equiv-
alent nodal forces P or from nodal displacements u. The use of Eq. (4-61) has two
decisive advantages as compared with a procedure based on Eq. (4-51): (1) a sim-
ple analytical solution expressed in terms of P does not depend on the problem’s
topology, as it occurs with P*; (2) most importantly, the evaluation of P* — via the
solution of Eq. (4-14) — is no longer necessary.
The matrix U* can be split as in Eq. (4-47), so that Eq. (4-61) becomes

UJP=HU-U,P=Y (4-62)

which corresponds to uncoupled sets of equation for each node i of the boundary,

vy, U | (P Y, _
[ I [ m):( U) i=1,..m (463
Ubeo Ube i\ Po ); Yo ),

Each analytical solution of the axisymmetric problem provides two equations.

Therefore, at least two linearly independent analytical solutions are necessary for


DBD
PUC-Rio - Certificação Digital Nº 0410745/CA


PUC-Rio - Certificacéo Digital N° 0410745/CA

The simplified-hybrid boundary element method for axisymmetric elasticity 61

the evaluation of the four unknowns U}, related to node i. In general, three analytical
solutions are required to ensure a solution for any given boundary geometry, namely
(Uy, Py), (Up, Py) and (Us, P3), to be presented in the next Section. However, in
the case of a node i on the axis of axisymmetry & = 0, an additional analytical
solution, namely (Uy, P4) = (A;, 0), must be included. This solution, where A; is the
i, column of A, expresses, according to Eq. (4-39), that radial ring loads applied on
the axis of axisymmetry produce no displacements.

The analytical solutions can be applied to each node i of the boundary to

obtain
Pyiy P [UZ(rr) Ub ) _ Yooy | Y200 (4-64)
U;(Zr) UZ)(«: i

22)
Z

i i
where the fourth row of equations is to be included only if & = 0. This comple-
mentary row follows from Eq. (4-34). Finally, the unknown coefficients of U* are
evaluated by solving the above equation in terms of least squares for each node i.

As mentioned before, U* is symmetric for the coeflicients referring to dis-
tinct nodes. However, there is no theoretical reason for Ufrz) = U(*rz) when these
coeflicients refer to the same nodes, since its evaluation depends on the overall dis-
cretization of the body. Several numerical examples demonstrated that the results
are more accurate when the symmetry is not imposed in the least squares system of
equations, as adopted in this work. As the discretization of the boundary is refined,
U tends to symmetry and the accuracy of the procedure can be assessed by means
of Eq. (4-32), for instance.

The main advantage of this procedure is its validity for any topological
configuration, since it does not depend on V. Also, the explicit evaluation of C is not
necessary in this formulation. The above procedure can be applied directly to non-
convex volumes with disconnected surfaces, with no need of further developments
in terms of complementary domain.

The axisymmetric analytical solutions referred to in this section are presented

in the following Section.

41.5.3
Axisymmetric analytical solutions

To ensure that each node of the boundary has at least two linearly independent
analytical solutions, no matter its coordinate direction (r,z) and outward normal
(1:,7m.), at least three analytical solutions are necessary. These functions were

derived as the simplest non-singular solutions of the Navier-Cauchy equilibrium
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equations, given by Egs. (2-26) and (2-28), also ensuring that they orthogonal to
each other. Moreover, these analytical solutions are valid for any value of v, then

also for incompressible solids.

Analytical solution 1

The simplest solution that satisfies

cr-=1, o0,.=0 and o.=0 (4-65)
is
r(1-v) n
u = 0 and t; = [ ' ] (4-66)
() 0

Analytical solution 2

The simplest solution that satisfies

c,=0, 0.=0 and o.=1 (4-67)
is
_Z,u Z1V+v) 0
u; = . and t, = (4-68)
2u (14v) 2

Analytical solution 3

The simplest non-singular stress state, orthogonal to the analytical solutions

1 and 2, is in principle

,=0, o.=-r/2 and o.=z2 (4-69)

with corresponding displacements and traction forces

7

4u(1+v)

__rzv I
ﬁ3 = [ 2}21_(1;—\/) ] and ‘f3 = [ rn, 2 ] (4-70)

The fundamental solutions do not depend on the nodal coordinates but only
on the relative positions between the source and field points. Accordingly, the
matrices U* and H do not change if the coordinate system is translated in the

direction z, and the same is expected with respect to the unknown coefficients about
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the main diagonal of U*. For the analytical solutions 1 and 2, a translation ¢, of
coordinate does not change the traction force values and only gives rise to rigid

body displacements,

0 0
u(l: = [ v ] and ll; = [ c ] (4-71)

T a4y 2ﬂ(f+v)

which are filtered when multiplied by H, according to Eq. (4-24). As a consequence,
a coordinate translation ¢, does not interfere in the evaluation of the unknown values
of U*, if only the analytical solutions 1 and 2 are taken into account. On the other
hand, the non-linear term z> of 73, in Eq. (4-69) leads to a change of the constant

traction forces for a coordinate translation c;:

crv

__G . 0

oo | e ) e
4 (1+v) €1

Then the analytical solution 3 is best referred to a node i of coordinates (r;, z;), in

order to become invariant to coordinate translation,

4u (1+v)

_ri=zv _rn
_ 2u(1+v) _ 2 r
u=| LTS and t; = [ o ] i=1,.,n, 4-73)
[ S ] G4 - )7
or in terms of Egs. (4-68) and (4-70), to simplify the numerical calculation, for each
node i

uz = ﬁ3 —ZiU (4'74)

ti=ti-zt (4-75)

4.1.6
Stiffness matrix

In the original version of the simplified-hybrid boundary element method,

the stiffness matrix was obtained by solving for p* in Egs. (4-14) and Eq. (4-21),

resulting in the system expressed by Eq. (3-14). The corresponding stiffness matrix
is given by

K = H" (P;; UV Pyt (4-76)

An alternative expression for the stiffness matrix can be obtained by just

solving for p in Eq. (4-60):

K=U"P;)""H (4-77)
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The generalized inverses [75] of the singular matrices P, U* and U*T Py, are

discussed in the next Section. These inverses are such that
B U = [T Ry (4-78)

This work adopts the stiffness matrix given by Eq. (4-77) since it uses the transposed
U, for which their unknown coefficients are evaluated in the procedure presented in
Section 4.1.5.2. It may be shown that with increasing mesh refining the expressions
of Egs. (4-76) and (4-77) tend to be equivalent and K tends to become symmetric.
In the following, two alternative ways of computing the generalized inverses
of the two above equations are outlined. Of course, the procedure of Section 4.1.6.2
is the adequate one for implementation purposes, as it does not make use of the
orthogonal basis V. In fact, the outline of Section 4.1.6.1 is given only for historical

reasomns.

4.1.6.1
Generalized inverses of Py, U*

The matrix Py, U* is singular and its rank depends on the number of boundary
nodes on the axis of axisymmetry. In this case, all the coefficients of the rows
corresponding to the r-direction of U* are void, since u;;, = 0 for & = 0. Thus,
one must distinguish the following cases.

Case 1: I'(r, z) does not intercept the axis of axisymmetry

In this case, rank Py, U* = n, — 1, where n, is the number of displacement
degrees of freedom.
The inverse of P¢V U* can be obtained in the frame of the Bott-Duffin in-

verse [76, 75] for the solution of p* in the following restricted system

PJ_ U* *:PJ_
{ wo P = (4-79)

Pvp* =0

which refers to the transformation of forces p* into displacements Py, u in the space
spanned by Py,. Since matrix Py, U* does not transform unbalanced forces of the

space spanned by Py, as shown in Eq. (4-32), its inverse can be written as

(P, UHD = P (PL UPE + APy)™! (4-80)
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The term in brackets is by construction non-singular and A is a constant of order 1/u

to make sure that the summands have approximately the same order of magnitude.

Case 2: ['(r, z) intercepts the axis of axisymmetry

Let n, be the number of points at which I'(7, z) intersects the axis of axisym-
metry. In this case, rank Py, U* = n, — n, — 1. The number n, refers to the radial
ring sources applied on the axis of axisymmetry of basis A, given by Eq. (4-34) and
introduced in Section 3.1.4.

The corresponding orthogonal and complementary orthogonal projectors are

Py =P, +Py (4-81)
Py, =1-Py (4-82)

Similarly to the inverse presented in Case 1 and considering Egs. (4-39) and
(4-32), the inverse of U*T Py, is expressed by

(P, UNTY = P, (P, UPy, + APy (4-83)

4.1.6.2
Generalized inverses of U™ Py,

Simillarly to the inverse of Py, U*, one must distinguish the following two

inverses.

Case 1: I'(r, z) does not intercept the axis of axisymmetry

In this case, rank UT Py, = n, — 1.
The inverse of U*T Pvlv can be obtained in the frame of the Bott-Duffin

inverse [76, 75] for the solution of p in the following restricted system

UTP,p=H
{ wp == (4-84)

Pwp:0

which refers to the transformation of equivalent forces p into displacements Hu
in the space spanned by P5;. Since matrix U*T P§, does not transform unbalanced
forces of the space spanned by Py, as shown in Eq. (4-33), its inverse can be written
as

(UTPy) " = Py, (UT Py, + APy) ™! (4-85)
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in which the term in brackets is by construction non-singular.

Case 2: ['(r, z) intercepts the axis of axisymmetry

In this case, rank U*T Pvlv = n, — n, — 1. The number n, refers to the radial
ring sources applied on the axis of axisymmetry of basis A, given by Eq. (4-34) and
introduced in Section 3.1.4.

The corresponding orthogonal and complementary orthogonal projectors are

PAW = PA + PW (4—86)
Piw =1 -Paw (4-87)

Similarly to the inverse presented in Case 1, the inverse of U*T Py, is expressed
by
(UTPy) " = Py (UT Py + APy ™! (4-88)

For the Case 2 of the inverses discussed in this section, the resulting stiffness
matrix K has its rank reduced by —1 for each node on the axis of axisymmetry.
In this case, prescription of zero radial displacements at these nodes provides the

additional conditions for the system of equations to be solved.

4.1.7
Displacements and stresses in the domain

The displacements u; and the stresses o7, at a point Q(r,z) in the domain

Q) can be evaluated by Egs. (4-3), (4-2) and (4-4). The rigid body displacement

constant C,, p;, = Cp”* is given in terms of nodal displacements along the boundary

by Eq. (4-20). The forces p* can be solved in Eq. (4-14) in terms of equivalent nodal
forces,

p'=H)"p (4-89)

In the above equation, since the matrix H is singular, the inverse (HT)"" must be

obtained in the frame of generalized inverses [75], as presented in the following.

41.71
Generalized inverse of H

Consider the unbalanced forces of basis V that produce rigid body displace-
ments in the z-direction and the transformation performed by the matrix HT in

Eq. (4-14). Its inverse can be obtained as a particular case of the Bott-Duffin in-
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verse [76, 75] for the solution of p* in the following restricted system

4-90
Pyp’ = 0 (4-90)

{ HT p* =p
which refers to the transformation of auxiliary forces p* of the space spanned by Py,
into forces p. Since H' does not transform unbalanced forces of the space spanned

by Py, as expressed in Eq. (4-25), its inverse can be written as
HYD =Py H" +Py) ! (4-91)

in which the term in brackets is by construction a non-singular term.

The procedure outlined above requires the evaluation of V and p*, which in-
volves the inversion of two matrices in Egs. (4-91) and (4-29). There are alterna-
tive ways of finding the generalized inverse of H that circumvent the evaluation of
the null space V, as in terms of least squares H™" = Py, (HTH + PW)_I HT [84].
However, the displacements and stresses in the domain can be assessed without
any additional integration also in the case of points that are close to the boundary.
This aspect is specially advantageous for axisymmetric problems, since, as outlined
in Section 3.2.3 for the conventional boundary element method, the usual way of
evaluating results at internal points requires the integration of long and complex
functions. The steps presented in the next Section can also be applied to the con-
ventional boundary element method, as presented by Gaul et al. [85] for problems

of elasticity and diffusion in the frequency domain.

41.8
Stresses on the boundary

The stresses o;; at a point Q(r,z) on the boundary can be obtained by
considering that the approximation for stresses o7}, in the domain Q is also valid
on the boundary I'. Applying Eq. (4-2) to each node of the boundary, one obtains

* *
npm Pm

T =2 or oc=X"p" (4-92)
in which the auxiliary nodal forces p* are calculated by Eq. (4-89) from known
equivalent nodal forces [42]. The index m refers to both the direction and the
point of application P(¢, z’) of the ring load. The indices n and p denote the stress
component o, to be evaluated at point Q(7, z).

When the points P(£,7") and Q(r,z) coincide, p = 0 and the functions

;¢ (Q,P) become singular. Therefore, analogously to the case of matrix U* pre-

ijm
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sented in Sections 4.1.4 and 4.1.5, some coeflicients of X*

wpm CANNOL be directly

evaluated.
Let X and P* be the nodal stresses and auxiliary nodal forces provided by an

axisymmetric analytical solution. Also, let the tensor X* be split into
=X+ X5 (4-93)

in which Xy is constituted by the unknown coeflicients of X*; and i;‘) is completely

known. Applying Eq. (4-92) iyelds
PP =YX-XP'=Y (4-94)

that can be rewritten for each node as

* *

z:D (rr)(r) Z:D (rr)(2) P Y( )

* * (r) — rr ;= _
2peam Do) r | |y £= Ly (4-95)
Z* Z* (2) (zz i

D (zz) (r) D(z2)(2) J;

In the above equation, each auxiliary axisymmetric analytical solution pro-
vides three equations. Therefore, two linearly independent analytical solutions are
needed in order to solve the system for the six unknown coefficients of Xy for each
node. Three auxiliary analytical solutions (Xq, P}), (X2, P3) € (¥3,P};) were pre-
sented in Section 4.1.5.3. One may also employ the orthogonality relation X*V = 0
for the unbalanced forces that produces no stresses, which constitute the auxiliary
solution (0, V). If the node i is placed on the axis of axisymmetry, the solution (A;, 0)
must also be taken into account.

Finally, the unknown coefficients of £* can be obtained by solving the three
systems of equations by least squares for each node i, similarly to the procedure
presented in Section 4.1.4 for U*.

As mentioned in Section 4.1.4.2, V,, = 0 at some boundary nodes in case of a
non-convex domain. This feature is consistent with the fact that the stress gradient
on regions close to such nodes has a local character and, whenever relevant in terms
of numerical solution, should be investigated appropriately. It is the case of stress
fields close to notches or around a crack tip.

Alternatively, one may also assess the stresses along the boundary by interpo-
lating the results in a local coordinate system, as presented in Section 3.1.7 for the

conventional boundary element method, and adopted in this work.
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4.2
Formulation for the axisymmetric halfspace problem

Figure 3.5 illustrates an axisymmetric problem in the halfspace. The devel-
opments for the axisymmetric halfspace problem — in the context of the simplified-
hybrid boundary element method — follow the same steps of the formulation for the
fullspace problem, as presented in Section 4.1, except that the fundamental solu-
tions are given as in Section 2.3 and, as a result, the rigid body translation in the
z direction is precluded. Then, the whole development of Section 4.1 is formally
applicable by simply removing any references to the inadmissible spaces spanned
by W and V. Therefore, this particular formulation is not repeated in the present
Section.

In the case of a halfspace problem, any additional numerical difficulties are
in principle only related to the evaluation of the matrix H, which has already been
dealt with in Chapter 3. Moreover, no formal evaluation of generalized inverses
is required, as the only inadmissible spaces refer to the cases of radial ring loads
applied at nodes on the axisymmetry axis, which can be dealt with exactly as
described for the Case 2 of Section 3.1.4.1.

However, too much effort has been invested in trying to solve the present
problem — as well as the fullspace problem — in the frame of the procedure
outlined in Section 4.1.4 in order to evaluate the coefficients of the submatrices
about the main diagonal of U*. Time and extensive code writing have been also
unduly devoted to solve the halfspace problem by splitting the fundamental solution
into two parts, since only the terms referring to the fullspace problem present
undetermined coefficients.

On the other hand, the procedure presented in Section 4.1.5 on the basis of a
hybrid contragradient theorem makes the problem trivial — provided that one finds
some simple analytical solutions for the halfspace problem to substitute for the ones
outlined in Section 4.1.5.3.

Finding simple, useful analytical solutions for the halfspace problem is not an
easy task. The first solution of Section 4.1.5.3 is a viable one. However, several sets
of solution developed until now present the drawback referred to for Egs. (4-69) and
(4-70), namely, that the formulation becomes dependent on the nodal coordinate
z;. This would be expected and is per se not a drawback, as the formulation for
the halfspace problem is intrinsically dependent on the distance of a point to the
surface z = 0. There is still more work to be done on the mathematics of the
subject, until the numerical results for the elements about the main diagonal of U~
become as satisfactory as in the case of the fullspace problem, for problems of any

configuration.
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For problems with Neumann boundary conditions, Eq. (4-14) is the only one
required in the solution of the problem. Owing to time restriction, this is the only
formulation implemented for halfspace problems in the frame of the simplified-
hybrid boundary element method, as developed in this thesis and presented in
Chapter 5. One hopes to find a solution for the problem as soon as possible in order

to make the formulation applicable to any kind of problem.
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