

Simulação de um Sistema de Refrigeração Operando com Nanofluido como Fluido Secundário

Dissertação de Mestrado

Dissertação apresentada ao Programa de Pós-Graduação em Engenharia Mecânica da PUC-Rio como requisito parcial para obtenção do título de Mestre em Engenharia Mecânica.

> Orientador: José Alberto dos Reis Parise Co-orientador: Frank Chaviano Pruzaesky

Rio de Janeiro, Abril de 2009

Juan Carlos Valdez Loaiza

Simulação de um Sistema de Refrigeração Operando com Nanofluido como Fluido Secundário

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pósgraduação em Engenharia Mecânica do Departamento de Engenharia Mecânica do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> Prof. José Alberto dos Reis Parise Orientador Pontifícia Universidade Católica do Rio de Janeiro

> Prof. Frank Chaviano Pruzaesky Co-Orientador Pontifícia Universidade Católica do Rio de Janeiro

Prof. Sergio Leal Braga Pontifícia Universidade Católica do Rio de Janeiro

> **Prof. Enio Pedone Bandarra Filho** Universidade Federal de Uberlandia

Prof. Hélcio Rangel Barreto Orlande

Universidade Federal de Rio de Janeiro

Prof. José Eugenio Leal Coordinador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 16 de abril de 2009

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Juan Carlos Valdez Loaiza

Graduou-se em Engenharia Mecânica no Depto. de Engenharia Mecânica da UCSM (Universidad Católica de Santa Maria), em 2006. Atualmente tem continuado com a linha de pesquisa na área de Termociências, com o estudo de simulação de sistemas e componentes de refrigeração e condicionamento de ar, sistemas secundários e nanofluidos.

Ficha Catalográfica

Valdez Loaiza, Juan Carlos

Simulação de um sistema de refrigeração operando com nanofluido como fluido secundário / Juan Carlos Valdez Loaiza ; orientador: José Alberto dos Reis Parise ; coorientador: Frank Chaviano Pruzaesky. – 2009.

130 f. : il. ; 30 cm

Dissertação (Mestrado em Engenharia Mecânica)-Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2009.

Inclui bibliografia

 Engenharia mecânica – Teses. 2. Refrigeração.
 Simulação. 4. Nanofluidos. 5. Nanopartículas. I. Parise, José Alberto dos Reis. II. Pruzaesky, Frank Chaviano. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Mecânica. III. Título. PUC-Rio - Certificação Digital Nº 0711114/CA

A esperança é o sonho de um homem decidido - Aristóteles

Agradecimentos

A minha mãe e irmã por seu amor e apoio incondicional.

A José Alberto dos Reis Parise, meu orientador, pela amizade e enorme paciência que teve comigo durante estes anos.

A meu co-orientador Frank Chaviano Pruzaesky, cujos trabalhos pioneiros sobre nanofluidos foram de enorme importância no desenvolvimento do presente trabalho.

A meus amigos Jorge, Cristiane, Belen, Luis, Paul, Hugo, Mijail e Miguel pela amizade e pelos bons momentos compartilhados nestes anos.

Agradecimentos em partícular para os órgãos de fomento à pesquisa CNPq, CAPES e FAPERJ, pelo apoio financeiro fornecido, sem o qual este trabalho simplesmente não teria sido possível.

Resumo

Loaiza, Juan Carlos Valdez; Parise, José Alberto dos Reis. **Simulação de um Sistema de Refrigeração Operando com Nanofluido como Fluido Secundário**. Rio de Janeiro, 2009. 130p. Dissertação de Mestrado – Departamento de Engenharia Mecânica, Pontifícia Universidade Católica de Rio de Janeiro.

Estudou-se, numericamente, a utilização de nanofluidos como fluidos secundários em sistemas de refrigeração por compressão de vapor. Foi desenvolvido um modelo de simulação de um sistema água-água com compressor alternativo e condensador e evaporador de tubo duplo reto. O método de multi-zonas foi utilizado na simulação dos trocadores de calor. As zonas bifásicas, por sua vez, foram discretizadas para levar em conta a variação local do coeficiente de transferência de calor. No caso do condensador determinou-se o coeficiente de transferência de calor a partir de um mapa de escoamento bifásico. No evaporador o nanofluido escoa na seção circular (interna) enquanto que o refrigerante escoa na seção anular. Um programa baseado na plataforma EES foi desenvolvido para a solução do sistema de equações algébricas não lineares resultantes do modelo matemático. Os resultados da simulação mostram que, para a mesma capacidade frigorífica, a área de troca de calor no evaporador e a queda de pressão no lado do refrigerante diminuem quando: (i) a concentração volumétrica das nanopartículas e a temperatura do fluido-base aumentam; (ii) o diâmetro das nanopartículas diminui. Observou-se, também, que a queda de pressão do lado do nanofluido e, conseqüentemente, a potência de bombeamento, aumentam com a concentração volumétrica de nanopartículas, mas diminuem para diâmetros das nanopartículas menores e temperaturas mais elevadas do fluido-base. Os resultados para um sistema típico mostraram que o uso de nanofluidos como fluidos secundários pode levar a uma redução de até 6% na área do evaporador, quando comparado com o fluido-base convencional.

Palavras-chaves

Refrigeração; simulação; nanofluidos; nanopartículas.

Abstract

Loaiza, Juan Carlos Valdez; Parise, José Alberto dos Reis (Advisor) **Simulation of a Refrigeration System working with Nano-fluids as Secondary fluid**. Rio de Janeiro, 2009. 130p. Msc Dissertation – Departamento de Engenharia Mecânica, Pontifícia Universidade Católica de Rio de Janeiro.

The use of nanofluids as secondary coolants in vapor compression refrigeration systems was numerically studied. A simulation model for a liquid-towater heat pump, with reciprocating compressor and straight double-tube condenser and evaporator was studied. The multi-zone method was employed in the modeling of the heat exchangers. By their turn, the two-phase regions of both condenser and evaporator were discretized to take into account the local variation of the refrigerant condensing and boiling heat transfer coefficients. In the condenser two-phase region, the local heat transfer coefficient was determined as a function of the governing two-phase flow regime. The nanofluid was supposed to flow through the inner circular section of the evaporator, while the refrigerant was left to the annular passage. A computational program, based on EES (Engineering Equation Solver) package, was developed to solve the resulting non-linear system of algebraic equations. Different nanoparticles (Cu, Al₂O₃, CuO and TiO₂) were studied for different volumetric concentrations and particle diameters. Simulation results have shown that, for a given refrigerating capacity, evaporator area and refrigerant-side pressure drop are reduced when: (i) the volumetric concentration of nanoparticles and nanofluid temperature increase; (ii) the diameter of nanoparticles decrease. Also, nanofluid-side pressure drop and, consequently, pumping power, increase with nanoparticle volumetric concentration and decrease with nanoparticle diameter and nanofluid temperature. Results from a typical case-study indicated an evaporator area reduction of up to 6%, with the use of nanofluids as secondary coolant, if compared to the conventional base-fluid (H_2O).

Keywords

Refrigeration; simulation; nanofluids; nanoparticles.

Sumário

1. Introdução	19
1.1. Objetivo	19
1.2. Justificativa	21
1.3. Estado da arte	23
1.3.1. Produção de nanopartículas e nanofluidos	25
1.3.2. Propriedades dos nanofluidos	29
1.3.3. Nanofluidos em refrigeração	32
1.3.3.1. Nanofluidos como fluidos secundários	32
1.3.3.2. Nanopartículas dispersas no refrigerante	34
1.4. Contribuição do presente trabalho	37
1.5. Conteúdo do Trabalho	37
2. Modelo matemático	38
2.1. Descrição do sistema proposto	38
2.2. Equações de conservação	40
2.3. Equações de transferência de calor	43
2.4. Compressão	44
2.4.1. Eficiência volumétrica	44
2.4.2. Eficiência isentrópica	47
2.5. Condensador	48
2.5.1. Método multi-zonas	48
2.5.2. Coeficientes Globais de Transferência de calor	51
2.5.3. Mapa de escoamento bifásico para condensação no interior de tubos	
horizontais.	52
2.5.4. Coeficiente de troca de calor na zona bifásica do condensador	56
2.5.5. Coeficiente de troca de calor nas zonas de subresfriamento e de	
dessuperaquecimento do condensador	59
2.5.6. Coeficiente de troca de calor do fluido de resfriamento	60
2.5.7. Queda de pressão no lado do refrigerante na zona bifásica do	
condensador	60
2.5.8. Queda de pressão do refrigerante nas zonas de subresfriamento e	
dessuperaquecimento do condensador	61
2.5.9. Queda de pressão do fluido de resfriamento no condensador	62

2.5.10. Potência de bombeamento do fluido de resfriamento no condensador	63
2.6. Evaporador	63
2.6.1. Método multi-zonas	64
2.6.2. Coeficiente Globais de Transferência de calor	65
2.6.3. Coeficiente de troca de calor na zona bifásica do evaporador	66
2.6.4. Coeficiente de troca de calor no lado do refrigerante na zona de	
dessuperaquecimento do evaporador	69
2.6.5. Nanofluidos utilizados como fluidos secundários	70
2.6.5.1. Correlações utilizadas para determinar as propriedades	
dos nanofluidos	70
2.6.5.2. Estudo teórico da condutividade térmica efetiva dos nanofluidos	70
2.6.5.3. Viscosidade cinemática efetiva	74
2.6.5.4. Outras propriedades	76
2.6.5.5. Coeficiente de transferência de Calor	76
2.6.6 Queda de pressão nos nanofluidos	80
2.6.7 Queda de pressão do lado do refrigerante	81
2.6.8. Queda de pressão do refrigerante na zona de superaquecimento do	
evaporador	82
2.6.9. Potência de bombeamento do nanofluido	82
3. Método de solução	83
3.1. Introdução	83
3.2 Dados de entrada	83
3.2.1 Dados de entrada gerais no programa	83
3.2.2 Dados característicos dos componentes do sistema	84
3.3 Plataforma computacional	86
3.4 Desenvolvimento do Código	87
3.5 Estrutura do programa	88
3.6 Características específicas do método	89
3.6.1 Coeficiente convectivo local de transferência de calor no condensador	89
3.6.2 Coeficiente convectivo local de transferência de calor no evaporador	90
3.7 Teste de malha	91
4. Resultados	94
4.1. Parâmetros de desempenho	94
4.2. Variáveis de controle	94
4.2.1. Tipo de nanopartícula	94

4.2.2. Diâmetros das nanopartículas	95
4.2.3. Concentração volumétrica	95
4.2.4. Temperatura do nanofluido	95
4.3. Resultados da simulação	95
4.3.1. Dados de entrada	95
4.3.2. Simulação do Ciclo de Refrigeração	97
4.3.2.1. Compressor	97
4.3.2.2. Condensador	102
4.3.2.3. Evaporador	105
4.3.3. Nanofluidos como fluidos secundários de transferência de calor	107
5 Conclusões e sugestões para trabalhos futuros	121
5.1 Conclusões	121
5.2 Sugestões para trabalhos futuros	122

Lista de tabelas

Tabela 1 – Condutividade térmica de vários materiais sólidos e líquidos	
(Fonseca, 2007).	19
Tabela 2 – Sumário de estudos experimentais da condutividade térmica de	
nanofluidos (Xiang e Arum, 2008).	31
Tabela 3 – Resultados de diferentes testes de dispersão de	
nanopartículas em refrigerantes (Jacobi et al., 2007).	35
Tabela 4 - Expoente politrópico (Ciconcov e Hilligweg, 2004)	46
Tabela 5 - Números adimensionais para o evaporador de tipo tubo reto	
circular.	57
Tabela 6 –Valor da constante C da equação (2,114) para diferentes	
nanofluido (Velagapudi et al., 2008).	60
Tabela 7 - Números adimensionais para a avaliação de nanofluidos	
(Yu et al., 2007)	64
Tabela 8 – Propriedades termofísicas das nanopartículas	
Velagapudi et al (2008)	95

Lista de figuras

Figura 1. – Distribuição de emissões diretas por setor de CFCs, HCFCs e	
HFCs até 2015 (IPCC, 2005)	22
Figura 2 - Número de publicações sobre nanofluidos	
(Bandarra Filho et al., 2008).	25
Figura 3 – Nanopartículas de Al ₂ O ₃ (79%) e SiO ₂ (21%)	
(Hosokawa et al., 2007)	26
Flgura 4 Nanotubos de carbono de diferentes dimensões e múltiplas paredes.	
(Hosokawa et al., 2007).	26
Figura 5 – Sistema de produção de nanopartículas pelo método de fase	
gaseosa incrementado por plasta (Hosokawa et al., 2007)	27
Figura 6 – Esquema da produção de nanofluidos por	
evaporação / condensação de vapor metálico dentro de líquidos	
a baixa pressão por passo único. (Kostic, 2004)	28
Figura 7 – Esquema do homogenizador de alta pressão para	
produção de nanofluidos em dois passos (Hosokawa et al., 2007)	28
Figura 8 – Primeiros nanofluidos desenvolvidos por The Northern Illinois	
University em colaboração com â ANL (Kostic, 2004).	29
Figura 9 – Incremento da condutividade térmica com nanofluidos	
(partículas de cobre, óxido de alumínio (Al ₂ O ₃), e óxido cúprico (CuO))	
Eastmant et al., (2001)	30
Figura 10 – Estrutura do trocador de calor compacto estudado por	
Vasu et at. (2008).	33
Figura 11 – Diminuição do coeficiente de transferência de calor na	
ebulição de R134a-SiO ₂	34
Figura 12 - Incremento do coeficiente de transferência de calor	
evaporativo do R134a utilizando o nanolubrificante éster sintético/CuO	35
Figura 13 – Esquema do aparato experimental da Universidade	
de Illinois at Urbana-Champaign (Jacob et al., 2007 e 2008).	36
Figura 14- Layout de ciclo de refrigeração por compressão a vapor	38
Figura 15- Diagrama p-h do ciclo de refrigeração por compressão de vapor	39
Figura 16- Layout do sistema de circulação do fluido secundário no	
evaporador (nanofluido)	40
Figura 17- Representação esquemática do condensador projetado	48

Figura 18- Perfil de temperaturas para um condensador a contracorrente	49
Figura 19 - Padrão de escoamento bifásico, El Hajal et al (2003)	52
Figura 20 - Parâmetros geométricos utilizados nos mapas de	
El Hajal et al.(2003)	53
Figura 21 - Modelo mostrando a fronteira entre as forma de	
transferência de calor convectiva e por filme (El Hajal et al, 2003)	57
Figura 22- Representação esquemática do evaporador projetado	63
Figura 23- Perfil de temperaturas de um evaporador a contracorrente	64
Figura 24- Coeficiente de troca de calor como a soma da ebulição nucleada	
e de evaporação convectiva (Palm, 2004)	67
Figura 25 - Modos de transporte de energia em nanofluidos	
(Jang e Choi, 2004).	71
Figura 26- Comparação dos dados experimentais com os modelos de	
Hamilton Crosser (1930), o modelo de Jang e Choi (2005) e Browniano	
Wong e Kurma 2008).	74
Figura 27- Interpretação geométrica do Método de Newton-Raphson	
(Kelley, 2003).	87
Figura 28- Variação do coeficiente local de transferência de calor	
no condensador.	90
Figura 29- Variação do coeficiente local de transferência de calor no	
evaporador	91
Figura 30 – Teste de malha no evaporador	92
Figura 31 – Teste de malha no condensador	93
Figura 32 – Variação da potência de compressão com a temperatura	
de evaporação para várias temperaturas de condensação.	98
Figura 33 – Variação do trabalho de compressão específico com a	
temperatura de evaporação para várias temperaturas de condensação	99
Figura 34 – Variação da vazão mássica de refrigerante com a temperatura	
de evaporação para várias temperaturas de condensação	99
Figura 35 – Variação da capacidade de refrigeração com a temperatura	
de evaporação para várias temperaturas de condensação	100
Figura 36 – Variação da eficiência volumétrica real e do espaço nocivo	
com a relação entre as pressões de descarga e de aspiração	101
Figura 37 – Variação da eficiência volumétrica com a temperatura	
de evaporação para várias temperaturas de condensação	101
Figura 38 – Variação da fração de vazio com o titulo no condensador	

para o refrigerante R134a	102
Figura 39 – Mapa padrão de escoamento em condensadores de tubo reto	
de seção circular produzido na simulação	103
Figura 40 – Variação do coeficiente local de transferência de calor	
do refrigerante no condensador em função do Título	104
Figura 41 – Variação do coeficiente de transferência de calor do fluido	
de resfriamento para várias temperaturas de condensação	104
Figura 42 – Variação da área do condensador com a temperatura	
de condensação.	105
Figura 43 – Variação do coeficiente local de transferência de calor	
do refrigerante no evaporador em função do Título	106
Figura 44 – Variação da área do evaporador com a temperatura de	
evaporação com a temperatura de condensação (T _{cd} =60°C)	107
Figura 45 – Variação da área do evaporador para várias	
concentrações volumétricas de diferentes nanopartículas no fluido base	108
Figura 46 – Variação da área do evaporador para varios diâmetros de	
diferentes nanopartículas no fluido-base	109
Figura 47 – Variação da área do evaporador com a temperatura do	
fluido-base e diferentes nanofluidos	109
Figura 48 – Condutvidade térmica efetiva do nanofluido para	
diferentes nanopartículas no fluido base	110
Figura 49 – Variação da área do evaporador com a temperatura do	
nanofluido H_2O -Cu e diferentes concentrações volumétricas	111
Figura 50 – Queda de pressão do refrigerante no evaporador	
com a concentração volumétrica de diferentes nanopartículas no fluido-base	112
Figura 51 – Queda de pressão do refrigerante no evaporador para	
vários diâmetros de diferentes nanopartículas no fluido-base	112
Figura 52 – Queda de pressão do refrigerante no evaporador com a	
temperatura do nanofluido e diferentes nanopartículas	113
Figura 53 – Queda de pressão do refrigerante no evaporador com a	
temperatura do nanofluido H2O-Cu e diferentes concentrações volumétricas	. 113
Figura 54 –Viscosidade dinâmica efetiva do nanofluido para	
diferentes nanopartículas no fluido-base	114
Figura 55 – Variação da densidade do nanofluido para diferentes	
nanopartículas no fluido-base	115

Figura 56 – Queda de pressão do nanofluido no evaporador para	
várias concentrações volumétricas de diferentes nanopartículas	
no fluido-base	116
Figura 57 – Queda de pressão do nanofluido no evaporador para vários	
diâmetros de diferentes nanopartículas	116
Figura 58 – Queda de pressão do nanofluido no evaporador com a	
temperatura do nanofluido e diferentes nanopartículas	117
Figura 59 – Queda de pressão do nanofluido H_2O -Cu no evaporador	
com a temperatura do nanofluido e diferentes concentrações volumétricas	117
Figura 60 – Potência de bombeamento para várias concentrações	
volumétricas de diferentes nanopartículas no nanofluido	118
Figura 61 – Potência de bombeamento para várias concentrações	
volumétricas de diferentes nanopartículas no nanofluido	119
Figura 62– Potência de bombeamento para várias temperaturas do	
nanofluido e distintas nanopartículas	119
Figura 63 – Potência de bombeamento do nanofluido H ₂ O-Cu no	
evaporador para várias temperaturas do nanofluido e diferentes	
concentrações volumétricas	120

Lista de símbolos

A	área	[m ²]
C	coeficiente definido pelo nanofluido	[-]
C	calor específico a pressão constante	[kJ kg ⁻¹ K ⁻¹]
c _p	calor específico a volume constante	[kJ kg ⁻¹ K ⁻¹]
\bar{c}_r	razão de espaço nocivo	[-]
COP	coeficiente de desempenho	[-]
D, d	diâmetro	[m]
DTML	diferença média logarítmica de temperaturas	[°C]
E	energia	[kJ]
E	fator de melhora	[-]
E f G g h h k L l_cyl M m m M M P P P pr	potência elétrica fator de atrito velocidade mássica aceleração da gravidade entalpia específica altura condutividade térmica comprimento número de cilindros massa molar massa vazão mássica velocidade angular pressão perímetro pressão reduzida	
\dot{Q}	taxa de transferência de calor	[kW]
q	efeito refrigerante	[kJ kg ⁻¹]
q"	fluxo de calor	[kW m ⁻²]
$ \overline{S} \\ S \\ S \\ T $	deslocamento do pistão fator de diminuição entropia específica temperatura	[m] [-] [kJ kg ⁻¹ K ⁻¹] [°C; K]
V V	volume deslocado por unidade de tempo volume	[m ³ s ⁻¹] [m ³]
W	potência	[kW]
U	coeficiente global de transferência de calor	[kW m ⁻² k ⁻¹]
u	velocidade	[m s ⁻¹]
w	trabalho de compressão adiabática	[kJ kg ⁻¹]

x	título
---	--------

Números adimensionais

Bo	Número de Boiling	[-]
Fr	Número de Froude	[-]
Nu	Número de Nusselt	[-]
Pr	Número de Prandtl	[-]
Re	Número de Reynolds	[-]
We	Número de Weber	[-]

[-]

Símbolos gregos

α	coeficiente de transferência de calor	[kW m ⁻² K ⁻¹]
$\overline{\gamma}$	expoente isentrópico	[-]
δ	espessura	[m]
Δz	diferença de altura	[m]
ΔT	diferença de temperatura	[°C; K]
ΔP	queda de pressão	[kPa]
ε	fração de vapor	[-]
η	eficiência	[-]
$\overline{\eta}$	expoente politrópico	[-]
θ	ângulo do perímetro do tubo	[rad]
μ	viscosidade	[N s m ⁻²]
v	volume especifico	[m ³ kg ⁻¹]
ξ	fator referente à linha de transição anular-névoa	[-]
П	razão de pressões	[-]
ρ	densidade ou massa especifica	[kg.m ⁻³]
σ	tensão superficial	[N m ⁻¹]
Ψ	esfericidade	[-]
φ	difusividade térmica	$\begin{bmatrix} 2 & -1 \\ m & s \end{bmatrix}$
ϕ	concentração volumétrica	[%]
χ_{tt}	parâmetro de Martinelli	[-]

Subscritos

bo	ebulição
bolhas	referente à linha de transição
С	referente ao espaço nocivo na eficiência volumétrica.
cd	condensação; condensador
со	fluido de resfriamento
со	referente ao fluido de resfriamento
ср	compressão
cross	transversal
ds	dessuperaquecimento

eff	efetivo
ev	evaporação; evaporador
f	filme
h	homogêneo; referente à fração de vazio
in	ingresso
in	interno
IA	referente a linha de transição entre o escoamento anular e o intermitente
I II	posição 1 referente à temperatura do fluido de resfriamento. posição 2 referente à temperatura do fluido de resfriamento.
т	médio
т	referido ao fluido base
névoa	referente à linha de transição
nf	nanofluido
пр	nanopartícula
l	líquido
liso	referente à linha de transição
LD	referente à dimensão normalizada de líquido no condensador
ondulado	referente à linha de transição
out	externo
out	saída
р	referente à nanopartícula
р	pistão
р	referente à queda de pressão na eficiência volumétrica
pool	referente à ebulição estacionária
q	referente à troca de calor na eficiência volumétrica
r	retrigerante
ra	vazio
sat	saturação
SC	subresfriamento
sf	fluido secundário
strat	estratificado
t	teórico
t	referente ao vazamento na eficiência volumétrica
tp	bifásico
v	vapor
VD	referente à dimensão normalizada de vapor no condensador