8. Referências bibliográficas

- AGRAWAL,H., MALLOY,Q.,G.,J., WELCH A.,W., MILLER,J.,W., COKER III, D.R. - In use gaseous and particulate matter emissions from a modern ocean going container vessel. Amosferic Enviroment 42 (2008), pag. 5504~5510. www.elsevier.com/locate/atmosenv.
- BARRETO, A., Manutenção e Emissões. 20° SEMINÁRIO DE ENGENHARIA NAVAL, 2004, Rio de Janeiro. Sociedade Brasileira de Engenharia Naval – SOBENA – 2004.
- BARRETO,A., Diagnóstico de desempenho de motores de dois tempos. 22° SEMINÁRIO DE ENGENHARIA NAVAL, 2008. Rio de Janeiro. Sociedade Brasileira de Engenharia Naval – SOBENA-2008.
- 4. CANADIAN SHIPOWNERS ASSOCIATION Marpol Annex VI, Consulting Meeting Washington DC, 2006.
- 5. CARLTON, J., S. *Marine Propellers and Propulsion* Butterworth & Heinmann, Londres, 1994.
- CHANG-SU, K., DONG-HOO, L.,YOUNG-SAM,C., The comparation about CFD simulation and measurement results of a two stroke diesel engine. In: INTERNATIONAL CONGRESS ON COMBUSTION ENGINES, 23, 2001, Hamburg. Proceedings: Conseil International des Machines a Combustion CIMAC, 2001.
- GERSTLE, M., MERKER, G.P. Transient simulation of marine diesel engines. In: INTERNATIONAL CONGRESS ON COMBUSTION ENGINES, 22, 1998, Copenhagen. Proceedings: Conseil International des Machines a Combustion – CIMAC, 1998. p 457.
- 8. HENDRICKS, E. Mean Value Modeling of Large Turbocharged Two Stroke Diesel Engines. SAE PAPER 890564, 1989.

- 9. HEYWOOD, JOHN, Internal Combustion Engines Fundamentals -McGraw-Hill, New York, 1988.
- HOUNTALAS, D.T., KOUREMENOS, A. D., Development and application of a fully automatic troubleshooting method for large marine diesel engines, APPLIED THERMAL ENGINEERING 19 (1999) 299-324 – www.elsevier.com
- 11. HYUNDAI, HEAVY INDUSTRIES CO.LTD. Shop Test Result off Main Engine 6 S 70MC n AA1126 – 1999.
- KAN T., Engine Performance Simulation On Turbocharger Matching With Exhaust Gas ByPass, Comunicação Interna, Diesel Engine Design Dept., Tamashima Works, Sumitomo Heavy Industries, Ltd., 1987.
- KIM, Y., H., Calculation Method of Turbocharger Eficiency & PTO Power Korea Heavy Industries & Constrution Co. Ltd – Prime Mover & Special Products Business Div. Chang Won, Korea, 1993.
- 14. KRUTOV, V., I., *Automatic Control of Internal Combustion Engines* Mir Publishers, Moscow, 1987.
- KYRTATOS, N. P., THEOTOKATOS,G.,XIROS,N.,I., MAREK, K.,DUGE,R. - Transient operation of large-bore two stroke marine diesel engine power plants: measurements and simulations. In: INTERNATIONAL CONGRESS ON COMBUSTION ENGINES, 23, 2001, Hamburg. *Proceedings*. Hamburg: Conseil International des Machines a Combustion – CIMAC, 2001. p. 1237-1250.
- MAN B&W Diesel A/S- Soot Deposits and Fires in Exhaust Gas Boiler – Copenhagen Denmark – 2004.
- MAN B&W Diesel A/S- Basic Principles of Ship Propulsion –
 P.254-9205 Copenhagen, Denmark 2006.
- MARPOL 73/78 NOx Code- Publication Sales Number C 520 E
 International Maritime Organization-IMO -1998.
- MEIER, E., A Simple Method of Calculation for Matching Turbochargers, Brown Bovery Review 5, Volume 68, Baden, Switzerland, 1981.
- MOLDANOVÁ, J., FRIDELL, E., POPOVICHEVA, O., DEMIRDJIAN, B., TIISHKOVA, V., FACCINETTO, A., FOCSA, C., Characterisation of particulate matter and gaseous emission

from a large ship diesel engine Atmosferic Environment 43 (2009), pag. 2632-2641 <u>www.elsevier.com/locate/atmsenv</u>.

- 21. SAMSUNG, *Result of Sea Trial* –MT Loire.-1999.
- VAN WYLEN,G., SONNTAG, R. E.,BORGNAKKE, C.,
 -Fundamentos da Termodinâmica Ed. Edgar Blucher Ltda –
 2003.
- 23. XIROS, N *Robust Control of Diesel Ship Propulsion* Springer Verlag London, 2002.
- 24. ZINNER, K. Supercharging of Internal Combustion Engines, Springer Verlag, Berlin, 1978.

9. APÊNDICE I

Dados de desempenho do motor 6S70 MC nos testes de aceitação.

O motor passa por um teste de desempenho em bancada acionando um dinamômetro hidráulico de especificação Froude LS – 44,1 MW x 150 rpm.

Tipo de motor: Hyundai MAN BW 6 S 70 MC

Número de cilindros 6

Diâmetro do cilindro: 700 mm

Comprimento da biela:3038 mm

Curso do pistão: 2674 mm

Potência de MCR:20900 BHP@83 rpm

Ordem de queima: 1,5,3,4,2,6.

Turbocompressor: VTR 714 D-32

Tabela 1-Resumo dos dados de desempenho do motor do DPST Ataulfo Alves em funcionamento de dinamômetro (Hyundai,1999).

Carga(%)	25	50	70	90	100	110
Pa (mmHg)	762,6	762,7	762,7	762,6	762,2	761,9
Ne (rpm)	52,3	65,9	73,7	80,1	83	85,7
mf (kg/s)		0,3687	0,5084	0,6554	0,7383	0,8290
kWe	3843	7682,9	10755,2	13818,0	15366,6	16904,2
kWi	4399,1	8387,8	11538,0	14675,7	16248,6	17823,0
Pz(bar)	67,3	94,3	117,3	139,7	140,0	139,3
Pcp(bar)	44,5	66,7	91,0	112,8	126,7	137,7
Pz-Pcp	22,8	27,6	26,3	27.7	13,3	1,6
Pi(bar)	8,18	12,38	15,22	17,82	19,04	20,22
FPI	51,7	70,6	82,6	95,5	103,2	110,8
Nt (rpm)	3858	6438	7908	8864	9408	9816
Ps(bar)	0,37	0,94	1,61	2,18	2,59	2,87
Ps(mmHg)	224	652	1150	1597	1890	2137
Pg(mmHg)	170,0	545,0	1012,0	1420,0	1697,0	1927,0
Tg(K)	554,0	613,0	623,0	638,0	657,0	679,0
Qe(10 ³ kN.m)	0,7017	1.1133	1.3935	1.6473	1.7679	1.8835

Momento de Inércia do hélice que equipa o DPST Ataulfo Alves.

Especificação do momento de inércia do hélice que equipa o navio usado no experimento de carga transiente, Samsung, (1999).

Tabela 2–Momento de inércia do hélice do DPST Ataulfo Alves.

Situação do propulsor	Momento de Inércia em Kg.m ²
No ar	133000
Na água com passo do hélice em zero	135200
Na água com passo do hélice todo	165100
aberto	

Conforme encontrado na literatura, uma boa aproximação para o momento de inércia do motor, e da linha de eixo pode ser estimada como o dobro do momento de inércia do hélice. (Xiros, 2002).

Parâmetros Calculados a partir dos dados de desempenho do motor real.

Rendimento do Turbo e do Compressor.

Aplicando os parâmetros que o motor desempenhou em bancada, nas equação 2.27 e 2.29, os seguintes valores são encontrados para os rendimentos de turbina e compressor:

Tabela 3-Rendimento da turbina com aplicação de várias faixas de carga, durante testes de aceitação em bancada.

Carga do motor	(%)	75	90	100	110
Rendimento	da	0,7299	0,6835	0,6634	0,6534
turbina					

Tabela 4-Rendimento do compressor com aplicação das faixas de carga durante testes de aceitação em bancada.

Carga do motor (%)	50	75	90	100
Rendimento do	0,8255	0,8216	0,8351	0,8197
compressor				

Determinação da massa de ar do motor do DPST Ataulfo Alves, a partir do mapa do compressor.

O mapa do compressor forneceu a informação sobre o volume de ar comprimido pela máquina, a 288 K. A taxa de compressão do compressor é calculada a partir da razão das pressões absolutas, do ambiente e na saída do mesmo, para tal os valores encontrados nos testes de aceitação serão usados.

Tabela 5-Consolidação dos parâmetros para cálculo da massa de ar, obtido a partir do mapa do compressor.

Carga do motor (%)	25	50	70	90	100	110
Та (К)	293,5	294,2	295,1	296,0	296,3	297,2
Pa (mmHg)	762,6	762,7	762,7	762,6	762,2	761,9
P ₂ (mmHg)	187,0	680,0	1180,0	1624,0	1920,0	2167,0
Π _c	1,245	1,891	2,547	3,130	3,519	3,844
N _t	64,3	107,3	131,8	147,7	156,8	163,6
N _{t298}	soprador	107,89	132,44	148,20	157,25	163,82
Va ₂₉₈	soprador	17,2	23,5	29,50	32,0	35,00
m _a (kg/seg)	soprador	20,42	27,74	34,72	37,63	40,65

Parâmetros de desempenho do turbo e do compressor.

As constantes das equação 4.20,

$$T_{21} = 1.833e^{-6},$$

$$T_{22} = 8.524e^{-4},$$

$$T_{23} = 7.666.$$

Da equação 4.21
 $bk_1 = 2.413e^{-9},$
 $bk_2 = -5.496e^{-5},$
 $bk_3 = 0.403,$
 $bk_4 = -6.99.$
e, da equação 4.22:
 $p_{21} = 5.068e^{-5},$
 $p_{22} = -0.308,$

$$p_{23} = 1019$$
,

formam os polinômios representados nas figuras, 63,64 e 65, respectivamente.

Figura 48-Polinômio representando a equação 4.13, que deduz a pressão de saída do compressor em mmHg. R^2=1.

Figura 49-Polinômio representando a equação 4.14, que deduz a temperatura de gás após a turbina.R^2=1.

Figura 50-Polinômio que representa a equação 4.15, que deduz a temperatura. R^2=0.9996.

A ABB forneceu um mapa do compressor, Figura 66, do turbo compressor ABB VTR 714-32, com a curva de trabalho do compressor nas faixas de carga durante os testes de aceitação. Os dados do desempenho de 25% de potência não foram computados, estágio que o soprador ainda está operando.

Nos modelos considerados nesse trabalho a perda de carga nos filtros de aspiração de ar do compressor não foram computados.

Razão de Compressão x Vazão

Figura 51–Mapa do compressor do turbo compressor ABB VTR 714, com a curva de trabalho do compressor nas faixas de carga durante os testes de aceitação.

Determinação da massa de ar.

A equação utilizada no modelo para deduzir a massa de ar, foi elaborada a partir dos dados de desempenho do motor e do mapa do compressor. A equação 4.16 é formada com as seguintes constantes: Para tal, o valor da massa de ar foi calculada a partir do volume obtido pela mapa do compessor, utilizando-se das rotações do turbo nos testes de aceitação, e pelas condições ambientes.

O valor obtido de massa de ar foi relacionado com a rotação do turbo por polinômio de terceiro grau, tendo as constantes:

$$k_{ma1} = -3.24,$$

 $k_{ma2} = 17.27,$
 $k_{ma3} = -14.81,$
 $k_{ma4} = 25.38.$

APENDICE I

Determinação do ganho termodinâmico para o motor do DPST Ataulfo Alves ajustagem do regulador de velocidade.

Na literatura de controle, o torque de um motor pode ser estimado através do produto de uma constante (ganho termodinâmico *C*) pelo indice das bombas injetoras (FPI). Sua dedução, realizada por matrizes (Ax=B), onde uma é o torque do motor (B), desempenhado em várias potências, e a outra é o índice das bombas injetoras (A), sendo x=C. A Figura 53 apresenta um ajuste linear e a plotagem dos pontos de desempenho.

С	46.66	0.7017	
	63.78	=	1.1133
	74.55		1.3935
	86.20		1.6473
	93.14		1.7679
	100		1.8835

C=18.53 kN.m/%FPI

Figura 52-Aspecto da dedução do ganho termodinâmico, pelo ajuste linear e diretamente plotado a partir dos dados de desempenho.

Determinação do coeficiente do hélice (*Kq0*) para o DPST Ataulfo Alves.

Da tabela de dados da aceitação o torque demandado pelo motor Qe, e o quadrado da rotação (rad) formam as matrizes:

2.7353		0.7017
4.3428		1.1133
5.4317		1.3935
6.4160	$K_{q0} = 10^3$	1.6473
6.8890		1.7679
7.3445		1.8835

Kq0=0.2566kN.m/rpm²

Determinação da função de dependência entre índice das bombas injetoras e rotação do motor.

Esta função é utilizada para simular a existência de um limitador de fumaça em modelo estático. Para isto, os dados medidos no teste no motor de 17 MW e os dados correlatos obtidos na literatura para o motor de 11 MW são utilizados para montar a função. Para o motor de 11 MW é:

FPI=(Ne-40.92)/74.08,

e, para o motor de 17 MW:

FPI=(0.02309*Ne^2-1.454*Ne+64.8).