

Jorge Leonidas Lafitte Vega

Avaliação e Reforço das Condições de Estabilidade de Tensão em Barras de Tensão Controlada por Geradores e Compensadores Síncronos

Tese de Doutorado

Tese apresentada ao Programa de Pós-graduação em Engenharia Elétrica do Departamento de Engenharia Elétrica da PUC-Rio como parte dos requisitos parciais para obtenção do título de Doutor em Engenharia Elétrica.

Orientador: Prof. Ricardo Bernardo Prada

Rio de Janeiro Abril de 2009 Pontifícia Universidade Católica do Rio de Janeiro

Jorge Leonidas Lafitte Vega

Avaliação e Reforço das Condições de Estabilidade de Tensão em Barras de Tensão Controlada por Geradores e Compensadores Síncronos

Tese apresentada como requisito parcial para obtenção do grau de Doutor pelo Programa de Pós-Graduação em Engenharia Elétrica do Departamento de Engenharia Elétrica do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> Dr. Ricardo Bernardo Prada Orientador Departamento de Engenharia Elétrica – PUC-Rio

> > Dr. João Alberto Passos Filho CEPEL

Dr. Luiz Cláudio de Araújo Ferreira ONS

Dr. Antonio Carlos Zambroni de Souza UNIFEI

> Dr. Luiz Carlos Pereira da Silva UNICAMP

Prof. José Eugenio Leal Coordenador Setorial do Centro Técnico Científico

Rio de Janeiro, 03 de abril de 2009

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Jorge Leonidas Lafitte Vega

Graduado em Engenharia Mecânica - Elétrica na Universidade Nacional de Engenharia de Lima (UNI, Peru) em 2002. Mestre em Engenharia Elétrica pela Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio, Brasil) em 2005. Dedicado a tempo integral à pesquisa em Sistemas de Energia Elétrica na PUC-Rio.

Ficha catalográfica

Vega, Jorge Leonidas Lafitte

Avaliação e reforço das condições de estabilidade de tensão em barras de tensão controlada por geradores e compensadores síncronos / Jorge Leonidas Lafitte Vega; orientador: Ricardo Bernardo Prada. – 2009.

259 f. ; 30 cm

Tese (Doutorado em Engenharia Elétrica) – Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2009.

Inclui bibliografia

1. Engenharia elétrica – Teses. 2. Segurança de tensão. 3. Estabilidade de tensão. 4. Controle de tensão. 5. Colapso de tensão. 6. Barras de tensão controlada. 7. Gerador síncrono. 8. Compensador síncrono. 9. Adequação do controle de tensão. I. Prada, Ricardo Bernardo. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Elétrica. III. Título.

CDD: 621.3

PUC-Rio - Certificação Digital Nº 0510503/CB

À minha querida mãe, Regina Vega Reyna pelo amor, apoio e confiança.

Agradecimentos

A Deus.

A minha mãe Regina Mirian Vega Reyna, por seus bons conselhos, infinito amor e por estar sempre a meu lado, sem ela seria impossível terminar o doutorado.

A meu pai Jorge Lafitte Roldán, por me cuidar e me guiar nesta vida, sua presença física não está mais comigo mas sua presença espiritual é suficiente para seguir adiante.

Ao meu bebê Priscila Crystal fruto do meu amor com minha querida esposa Gabriela a quem também dedico esta tese, assim como, a toda minha bela família.

Muito especialmente, agradeço ao meu orientador Ricardo Bernardo Prada pelo permanente apoio nas diferentes etapas do desenvolvimento nesta tese, por sua atenção e paciência na discussão dos diferentes aspectos relacionados ao tema de pesquisa.

Ao CEPEL pela licença de uso dos programas computacionais ANAREDE e FLUPOT.

À CNPq e à PUC-Rio, pelos auxílios concedidos, sem os quais este trabalho não poderia ter sido realizado.

A todos os amigos do curso de Pós - Graduação em Engenharia Elétrica, muito especialmente a Elias Ferroa, Vanessa Campos, Carlos Portugal, José Choque, Gustavo Ortega, Gian Ramalho, Felipe Lamm, Alex Paz, Yuri Molina, Mauricio Villanueva, Lindomar de Souza, Marcelo Araújo, Fernando Machado, Marcel Vasconcelos e Marcelo de Melo.

Vega, Jorge Leonidas Lafitte; Prada, Ricardo Bernardo (Orientador). Avaliação e Reforço das Condições de Estabilidade de Tensão em Barras de Tensão Controlada por Geradores e Compensadores Síncronos. Rio de Janeiro, 2009. 259p. Tese de Doutorado -Departamento de Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

Após a incidência de alguns colapsos de tensão em sistemas de transmissão de energia a nível mundial, a seguranca de tensão tornou-se um assunto de muito interesse nos últimos anos devido à importância do seu impacto. O fenômeno de estabilidade de tensão deve-se a fluxos de potência ativa e reativa excessivos na rede de transmissão e está associado às restrições ambientais e econômicas que impedem a expansão da rede. Atualmente, sabese da existência de uma máxima carga que pode ser alimentada pela rede e é a manifestação mais conhecida do fenômeno mas, também, é possível que o problema manifeste-se pela existência de uma máxima injeção de potência ativa e reativa na rede por geradores e compensadores síncronos. E mais, em situações de carregamento elevado da rede, é possível que ações de controle de tensão tenham efeito oposto ao usual. É apresentado um método següencial iterativo de avaliação e reforço para as condições de carregamento da rede em barras de tensão controlada, embora na literatura somente as barras de carga são analisadas. A verificação do comportamento do gerador e compensador síncrono como dispositivo de controle torna-se necessária já que, se funcionar de forma inversa, poderá levar o sistema ao colapso por problemas de tensão. Uma vez que a avaliação do carregamento da rede de transmissão detectou uma barra de geração crítica em um determinado ponto de operação, o reforço consiste do cálculo de ações de controle para aumentar a distância ou margem de potência entre a geração daguela barra e o novo máximo permitido. Muitas vezes isso pode ser conseguido através da alteração do perfil de tensão com a conseqüente redução nas perdas. Muitas outras vezes, o redespacho de potência ativa torna-se necessário. As etapas do método são: identificar a barra crítica, identificar a sub-rede utilizada para transmitir potência ativa dessa barra para as cargas, nessa sub-rede determinar o caminho e ramo mais carregados e, desviar o fluxo de potência do ramo mais carregado para outros. A seqüência é repetida até que as novas margens de potência sejam consideradas aceitáveis. Exemplos numéricos ilustrativos reais com o sistema brasileiro são apresentados. É verificado que o método proposto realmente produz os resultados desejados.

Palavras-chave

Segurança de tensão, estabilidade de tensão, controle de tensão, colapso de tensão, barras de tensão controlada, gerador síncrono, compensador síncrono, adequação do controle de tensão.

Abstract

Vega, Jorge Leonidas Lafitte; Prada, Ricardo Bernardo (Advisor). **Voltage Stability Assessment and Enhancement in Voltage-Controlled Buses by Synchronous Generators and Compensators**. Rio de Janeiro, 2009. 259p. Doctorate Thesis - Departamento de Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

After the incidence of some voltage collapses in the energy transmission systems in the world, the voltage security became an issue of great interest in the last years due to the importance of its impact. The phenomenon of voltage stability is due to the excessive active and reactive power flow in the electrical transmission network and has been associated with environment questions and lack of financial resources for transmission system expansion. Nowadays, it is well-known that there is a maximum power that the network can transmit to a load bus and is the best known manifestation of the phenomenon, but, is not familiar to many that there is a maximum power that can be injected by generators and synchronous compensators into the network. Moreover, in heavy loading conditions is possible that voltage control actions would have the inverse effect. It is shown a sequential iterative method for assessment and voltage security reinforcement in voltage-controlled buses, although the literature only the load buses are analyzed. The verification of the behaviour of the generator and synchronous compensator as control device becomes necessary since, if it works in an inverse way, it can take the system to the voltage collapse. Once the assessment is performed and is detected one generation critical bus in some operating point, the objective of the reinforcement function is to calculate adequate control actions in order to increase the distance or power margin between the actual generation and the new maximum power flow. Several times this may be achieved by voltage profile changes and consequent loss reduction. Sometimes that procedure is not enough and active generation rescheduling is recommended. The stages of the method are: identify the critical bus, identify the sub-network used to transmit active power flow from this bus to load buses, in this sub-network the critical transmission path and critical branch are determined and redirect the power flow from the branch more loaded to others. The sequence is repeated until resultant power margins are judged suitable. Illustrative real life numerical examples with the Brazilian system are provided. It is verified that the proposed method really produces the desired results.

Keywords

Voltage security, voltage stability, voltage control, voltage collapse, voltage controlled buses, synchronous generator, synchronous compensator, voltage control sensitivity.

Sumário

1	Introd	ução	21
	1.1	Considerações Gerais	21
	1.2	Trabalhos Anteriores	23
	1.3	Objetivos deste Trabalho	24
	1.4	Importância do Tema	25
	1.5	Revisão Bibliográfica	28
	1.6	Comparação do Método Proposto	47
	1.7	Estrutura do Trabalho	50
2	Carac	terização do Fenômeno de Estabilidade de Tensão	53
	2.1	Introducão	53
	2.2	Equações de Fluxo de Potência Ativa e Reativa Injetada na Ba	arra
	<u>.</u>		
	2.3	Curvas P, Q e o Constantes	55
	2.4	O LIMILE de Estabilidade de Tensão (LET)	57
	2.5	A Existencia da Potencia Transmitida Máximum Maximorum	02
	2.0	O Porque da Potencia Transmilida Maxima para a Carga	00
	2.1	O Porque da introdução de um Capacitor pode Diminuir a Ten	580
			70
3	Estud	o da Barra de Geração	74
Ŭ	3 1	Introducão	74
	3.2	Potência Ativa e Reativa Saindo da Barra de Geração	74
	3.3	Tensão Crítica na Barra de Geração	76
	0.0	3.3.1 Análise das Soluções de Ângulo na Barra Terminal	de
		Geração	
		3.3.1.1 Primeiro Caso	79
		3.3.1.2 Segundo Caso	81
	3.4	Avaliação das Condições de Estabilidade de Tensão em Barras	s de
		Tensão Controlada	85
	3.5	Simultaneidade da Máxima Geração e da Máxima Carga	87
4	Índice	os de Avaliação das Condições de Segurança de Tensão	92
	4 1	Introducão	92
	42	A Ferramenta Analítica	92
	1.2	4.2.1 Magnitude do Determinante da Matriz [D']	94
		4 2 1 1 Sistema Duas Barras	94
		4 2 1 2 Sistema Multi-Nó	95
		4.2.2 Sinal do Determinante da Matriz [D']	
		4 2 3 Margem de Potência	99
		424 Índice de Influência	101
	43	O Papel do Gerador Swing	103
	1.0	4 3 1 Localização e Importância	103
		4.3.2 A Similaridade com Barras PV	104
	4.4	Ordenação de Barras Críticas	104
_			
5	Eteito	Contrario de Ações de Controle de Tensão	108
	5.1	Introdução	108
	5.2	U Porque da Relação Oposta entre a Tensão de Excitação	e a
		E 2.1 Example Numérice	109
			110

	5.3	Índice: Tensão Interna x Terminal	113
		5.3.1 Exemplo Numérico	114
6	Cálcul	o de Ações de Controle para Reforço das Condições de Segura	nça
	de Ter	1São	117
	6.1	Introdução	117
	6.2	Identificação da Sub-Rede	121
	6.3	Identificação dos Caminhos de Transmissão	122
	6.4	Identificação do Caminho de Transmissão Mais Carregado	123
	6.5	Identificação do Ramo de Transmissão Crítico	124
	6.6	Processo de Otimização	124
		6.6.1 Máxima Transferência de Potência - MXTR	125
		6.6.2 Desvio de Potência Ativa - DGMW	126
	6.7	Critério de Parada para Estudos de Reforço da Segurança	de
		Tensão [ONS, 2002]	127
		6.7.1 Critério para Condição Normal de Operação	127
		6.7.2 Critério para Condição de Contingência Simples	128
7	Exemp	blo Numérico	129
	7.1	Introdução	129
	7.2	Sistema-teste de 34 Barras	129
	7.3	Identificação da Barra de Geração Crítica	132
	7.4	Identificação da Sub-Rede	134
	7.5	Identificação dos Caminhos de Transmissão e do Caminho n	nais
		Carregado	135
	7.6	Determinação do Ramo Crítico do Caminho mais Carregado	140
	7.7	Minimização do Fluxo de Potência no Ramo Crítico de Transmis	são
			143
		7.7.1 Função MXTR	144
		7.7.1.1 Minimização do Fluxo em Termos de MW	145
		7.7.2 Função DGMW	168
		7.7.2.1 Minimização do Fluxo em Termos de MVA	169
	7.8	Análise da Influência do LTC e CS no Meio do Caminho	de
		Transmissão	185
		7.8.1 LTC no meio do Caminho de Transmissão	185
		7.8.2 CS no Meio do Caminho de Transmissão	194
8	Aplica	ção no Sistema Brasileiro	200
	8.1	Introdução	200
	8.2	Cenário em Estudo: Máxima Injeção de Potência nos Geradores	s da
		UTE Mário Lago Alimentando Acréscimo de Carga em Vitória	201
	8.3	Identificação da Barra de Geração Crítica	207
	8.4	Eliminação de Restrições Violadas	207
	8.5	Identificação da Sub-Rede	210
	8.6	Identificação dos Caminhos de Transmissão e do Caminho n	nais
		Carregado	211
	8.7	Determinação do Ramo Crítico do Caminho mais Carregado	213
	8.8	Diminuição do Fluxo de Potência Ativa no Ramo Crítico	de
		Transmissão	216
		8.8.1 Diminuição do Fluxo em Termos de MW	216
		8.8.2 Diminuição do Fluxo em Termos de MVA	224
	8.9	Reforço das Condições de Segurança de Tensão na Barra	de
		Geração 1107 - ITAIPU60-9GR	232
		8.9.1 Função-Objetivo MXTR e Diminuição do Fluxo em Terr	nos
		de MW	232
		8.9.2 Função-Objetivo DGMW e Diminuição do Fluxo em Terr	nos
		de MVA	234

9	Conclusões e Trabalhos Futuros	.237
10	Referências bibliográficas	.241
Apên Apên Apên	ndice A - O Limite Estático de Estabilidade Angular (LEA) ndice B - Cálculo do Ângulo Crítico da Tensão na Barra de Geração ndice C - Sistema-Teste de 34 Barras Desenvolvido pelo CEPEL	.249 .252 .259

Lista de Figuras

Figura 2.1 - Sistema Série de Duas Barras54
Figura 2.2 - Três Possibilidades de Solução para a Tensão na Carga com Mesmo Fator de Potência
Figura 2.3 - Curva para Fator de Potência Constante na Barra de Carga no Plano SV57
Figura 2.4 - Circuito com as Impedâncias da Transmissão e da Carga58
Figura 2.5 - Limite de Estabilidade de Tensão no Plano SV62
Figura 2.6 - Lugar Geométrico da Tensão na Carga para Todos os Possíveis Diferentes Níveis de Potência Ativa Constante e Para Alguns Níveis de Potência Reativa Constante
Figura 2.7 - Aumento e Diminuição da Tensão Respectivamente na Região Superior e Inferior da Curva com a Introdução de um Capacitor64
Figura 2.8 - Potência Ativa Consumida na Carga com Fator de Potência Constante
Figura 2.9 - Circuito sem Capacitor70
Figura 2.10 - Circuito com Capacitor
Figura 3.1 - Potência Ativa e Reativa Saindo da Barra de Geração num Circuito de Duas Barras
Figura 3.2 - Gradientes ∇P_{GL} e ∇Q_{GL} alinhados no Máximo Carregamento77
Figura 3.3 - Caso 1: Ponto de Máximo no Plano PV80
Figura 3.4 - Caso 1: Candidatos a Ponto de Máximo no Plano θV 80
Figura 3.5 - Caso 2: Ponto de Máximo no Plano PV82
Figura 3.6 - Caso 2: Candidatos a Ponto de Máximo no Plano θV 83
Figura 3.7 - Localização do Ponto de Operação na Parte Superior da Curva SV
Figura 3.8 - Localização do Ponto de Operação na Parte Inferior da Curva SV.87
Figura 3.9 - Máxima Carga Limitada pela Potência que Chega na Barra de Carga
Figura 3.10 - Máxima Carga Limitada Simultaneamente pela Potência que Sai da Barra de Geração e pela que Chega na Barra de Carga89
Figura 3.11 - Máxima Carga Limitada pela Potência que Sai da Barra de Geração90
Figura 4.1 - Localização do Vetor Gradiente de P_i e Q_i no Plano θV 99
Figura 4.2 - Sinal da Margem na Curva SV100
Figura 4.3 - Movimento dos Pontos de Operação Correspondendo à Deterioração da Margem102
Figura 4.4 - Curva SV para Análise do Índice de Influência102
Figura 4.5 - Ordenação das Barras Críticas107

Figura 5.1 - Curvas Tensão de Excitação e Potência Reativa Versus a Tensão Terminal do Gerador
Figura 5.2 - Modelo do Gerador, Linha de Transmissão e Carga109
Figura 5.3 - Variações das Tensões Interna e Terminal a Partir de Um Ponto na Região Normal de Operação115
Figura 5.4 - Variações das Tensões Interna e Terminal a partir de Um Ponto na Região Anormal de Operação116
Figura 6.1 - Parte da Rede no Entorno da Barra i118
Figura 6.2 - Sistemas Diferentes Alimentando a Mesma Carga118
Figura 6.3 - Caminho de Transmissão Genérico119
Figura 6.4 - Curvas SV para Diferentes Segmentos da Rede120
Figura 7.1 - Sistema-Teste de 34 Barras Modificado
Figura 7.2 - Característica Tensão Versus Potência Ativa na Barra 29131
Figura 7.3 - Identificação da Sub-Rede do Sistema-Teste de 34 Barras135
Figura 7.4 - Fluxo no Ramo 28-29 Antes e Após a 1ª Iteração com a Função MXTR145
Figura 7.5 - Identificação da Sub-Rede Após a 1 ^a Iteração com a Função MXTR
Figura 7.6 - Fluxo no Ramo 28-29 Antes e Após a 2 ^a Iteração com a Função MXTR
Figura 7.7 - Identificação da Sub-Rede Após a 2ª Iteração com a Função MXTR
Figura 7.8 - Fluxo no Ramo 27-29 Antes e Após a 3ª Iteração com a Função MXTR
Figura 7.9 - Identificação da Sub-Rede Após a 3ª Iteração com a Função MXTR
Figura 7.10 - Fluxo no Ramo 28-29 Antes e Após a 1ª Iteração com a Função DGMW
Figura 7.11 - Identificação da Sub-Rede Após a 1ª Iteração com a Função DGMW
Figura 7.12 - Fluxo no Ramo 28-29 Antes e Após a 2ª Iteração com a Função DGMW
Figura 7.13 - Identificação da Sub-Rede Após a 2ª Iteração com a Função DGMW
Figura 7.14 - Circuito π Equivalente de um LTC com Variação de <i>Tap</i> s no Primário
Figura 7.15 - Diagrama Unifilar do Sistema com Gerador, LTC, Linha de Transmissão e Carga
Figura 7.16 - Curvas P ₁₀ vs V ₁ para Diferentes <i>Taps</i> do Transformador189
Figura 7.17 - Diagrama Unifilar do Sistema com Gerador, CS, Linha de Transmissão e Carga
Figura 7.18 - Curvas P ₁₀ vs V ₁ para Diferentes Compensação Reativa na Barra de Carga

Figura 8.1	- Índice β nas Barras da UTE NF e Fluxo entre Adrianópolis e Macaé202
Figura 8.2	- Índice M nas Barras da UTE NF e Fluxo entre Adrianópolis e Macaé
Figura 8.3 -	- Índice β nas Barras 3977 - M.Lago-12Gr e 3978 - M.Lago-8Gr da UTE Mário Lago203Figura 8.4 - Índice M nas Barras 3977 - M.Lago- 12Gr e 3978 - M.Lago-8Gr da UTE Mário Lago204
Figura 8.4 -	Índice M nas Barras 3977 - M.Lago-12Gr e 3978 - M.Lago-8Gr da UTE Mário Lago2064
Figura 8.5	 Fluxos de Potência Ativa e Reativa Considerando 393,1 MW de Injeção de Potência pela UTE Mário Lago206
Figura 8.6 -	Análise de Fluxo de Potência no Ramo de Transmissão 2614-2697, 2697-2616 e 2697-2617 Após a Eliminação das Restrições Violadas216
Figura 8.7 -	Fluxos no Ramo 147-175 Antes e Após a 1ª Iteração com a Função- Objetivo MXTR217
Figura 8.8 -	Análise de Fluxo de Potência no Ramo de Transmissão 2614-2697, 2697-2616 e 2697-2617 Após a 1 ¹ Iteração com a Função-Objetivo MXTR
Figura 8.9 -	Fluxos no Ramo 147-148 Antes e Após a 2ª Iteração com a Função- Objetivo MXTR
Figura 8.10	- Fluxos no Ramo 147-175 Antes e Após a 1ª iteração com a Função-Objetivo DGMW224
Figura 8.11	 Análise de Fluxo de Potência no Ramo de Transmissão 2614-2697, 2697-2616 e 2697-2617 Após a 1ª Iteração com a Função-Objetivo DGMW228
Figura 8.12	- Fluxos no Ramo 147-148 Antes e Após a 2ª Iteração com a Função-Objetivo DGMW229

Lista de Tabelas

Tabela 2.1 - Três Possibilidades de Solução para a Tensão na Carga com
Mesmo Fator de Potência56
Tabela 2.2 - Variações de Tensão, Corrente e Potência na Barra de Carga68
Tabela 2.3 - Pontos de Operação para Avaliar o Aumento ou Decréscimo da
Tensão com a Introdução de um Capacitor72
Tabela 3.1 - Pontos de Operação 1, 2 e 3 da Figura 3.989
Tabela 3.2 - Pontos de Operação 1, 2 e 3 da Figura 3.1089
Tabela 3.3 - Pontos de Operação 1, 2 e 3 da Figura 3.1190
Tabela 5.1 - Ponto de Operação na Região Normal da Curva SV110
Tabela 5.2 - Ponto de Operação na Região Anormal da Curva SV111
Tabela 5.3 - Pontos de Operação para Dois Níveis de Tensão na Barra Terminal
do Gerador111
Tabela 7.1 - índices de Estabilidade de Tensão no Caso-Base para o Ponto de
Operação S34_A06 Considerando a Barra 34 Swing132
Tabela 7.2 - Índices de Estabilidade de Tensão no Caso-Base para o Ponto de
Operação S34_A06 Considerando a Barra 26 Swing134
Tabela 7.3 - Determinação dos Caminhos de Transmissão e Margens de
Potência a Partir do Gerador 34 para o Ponto de Operação
S34_A06136
Tabela 7.4 - Determinação dos Sub-Caminhos do Caminho de Transmissão Mais
Carregado e Margens de Potência a partir do Gerador 34 para o
Ponto de Operação S34_A06141
Tabela 7.5 - índices de Estabilidade de Tensão Após a 1ª Iteração com a Função
MXTR146
Tabela 7.6 - Determinação dos Caminhos de Transmissão e Margens de
Potência a Partir do Gerador 1 para o Ponto de Operação Após a 1ª
Iteração com a Função MXTR147
Tabela 7.7 - Determinação dos Sub-Caminhos do Caminho de Transmissão Mais
Carregado e Margens de Potência a partir do Gerador 1 Após a 1ª
Iteração com a Função MXTR148
Tabela 7.8 - Índices de Estabilidade de Tensão Após a 2ª Iteração com a Função
MXTR153

Tabela 7.9 - Determinação dos Caminhos de Transmissão e Margens de
Potência a Partir do Gerador 1 para o Ponto de Operação Após a 2ª
Iteração com a Função MXTR154
Tabela 7.10 - Determinação dos Sub-Caminhos do Caminho de Transmissão
Mais Carregado e Margens de Potência a partir do Gerador 1 Após
a 2ª Iteração com a Função MXTR155
Tabela 7.11 - Índices de Estabilidade de Tensão Após a 3ª Iteração com a
Função MXTR160
Tabela 7.12 - Determinação dos Caminhos de Transmissão e Margens de
Potência a Partir do Gerador 1 para o Ponto de Operação Após a 3ª
Iteração com a Função MXTR161
Tabela 7.13 - Determinação dos Sub-Caminhos do Caminho de Transmissão
Mais Carregado e Margens de Potência a partir do Gerador 1 Após
a 3ª Iteração com a Função MXTR162
Tabela 7.14 - Caminho Transmissão Mais Carregado e Ramo Crítico Após de
cada Iteração com a Função MXTR167
Tabela 7.15 - Variação de Geração Ativa e Perdas no Sistema Após cada
Iteração com a Função MXTR168
Tabela 7.16 - índices de Estabilidade de Tensão Após a 1ª Iteração com a
Tabela 7.16 - índices de Estabilidade de Tensão Após a 1ª Iteração com a Função DGMW170
Tabela 7.16 - índices de Estabilidade de Tensão Após a 1 ^ª Iteração com a Função DGMW
 Tabela 7.16 - índices de Estabilidade de Tensão Após a 1^a Iteração com a Função DGMW
 Tabela 7.16 - índices de Estabilidade de Tensão Após a 1^a Iteração com a Função DGMW
 Tabela 7.16 - índices de Estabilidade de Tensão Após a 1ª Iteração com a Função DGMW
 Tabela 7.16 - índices de Estabilidade de Tensão Após a 1^a Iteração com a Função DGMW
 Tabela 7.16 - índices de Estabilidade de Tensão Após a 1^a Iteração com a Função DGMW
 Tabela 7.16 - índices de Estabilidade de Tensão Após a 1^a Iteração com a Função DGMW
 Tabela 7.16 - índices de Estabilidade de Tensão Após a 1ª Iteração com a Função DGMW
 Tabela 7.16 - índices de Estabilidade de Tensão Após a 1ª Iteração com a Função DGMW
 Tabela 7.16 - índices de Estabilidade de Tensão Após a 1^a Iteração com a Função DGMW
 Tabela 7.16 - índices de Estabilidade de Tensão Após a 1ª Iteração com a Função DGMW
 Tabela 7.16 - índices de Estabilidade de Tensão Após a 1ª Iteração com a Função DGMW
 Tabela 7.16 - índices de Estabilidade de Tensão Após a 1ª Iteração com a Função DGMW
 Tabela 7.16 - índices de Estabilidade de Tensão Após a 1^a Iteração com a Função DGMW
 Tabela 7.16 - índices de Estabilidade de Tensão Após a 1ª Iteração com a Função DGMW

Tabela 7.23 - Variação de Geração Ativa e Perdas no Sistema Após de cadaIteração com a Função DGMW185
Tabela 7.24 - Ponto de Operação onde a Barra de Controlada têm Índices β e M positivos
Tabela 7.25 - Sub-Caminhos de Transmissão para o Sistema de Três Barras com Tensão Controlada por LTC em V=0,665 pu na Barra do
Tabela 7.26 - Sub-Caminhos de Transmissão para o Sistema de Três Barras com Tensão Controlada por LTC em V=0,745 pu na Barra do Meio
Tabela 7.27 - Caminhos de Transmissão a partir das Barras de TensãoControlada pelo LTC e pelo Gerador Síncrono
Tabela 7.28 - Sub-Caminhos de Transmissão para o Sistema de Três Barras com Tensão Controlada por CS em V=0,665 pu na Barra do Meio
Tabela 7.29 - Sub-Caminhos de Transmissão para o Sistema de Três Barras com Tensão Controlada por CS em V=0,745 pu na Barra do Meio
Tabela 8.1 - Máxima Injeção de Potência pela UTE Mário Lago Limitado pela Máxima Geração da UTE NF com Índices Positivos205
Tabela 8.2 - índices das Barras do Tronco de Transmissão entre Adrianópolis e Vitória Considerando Aumento da Geração pela UTE Mário Lago
Tabela 8.3 - Dados dos Grupos Limites de Tensão
Tabela 8.4 - Tensões e Índices no Caso-Base e Após a Eliminação deRestrições Violadas devido à Máxima Injeção de Potência pela UTEMário Lago210
Tabela 8.5 - Tensões e Índices no Caso-Base e Após a Eliminação deRestrições Violadas no Tronco de Transmissão de Adrianópolis, Macaé, Campos e Vitória
Tabela 8.6 - Caminho Critico de Transmissão da Barra 3962 - N.Flu-G1-3Gr211
Tabela 8.7 - Caminho Critico de Transmissão da Barra 3963 - N.Flu-V1-1Gr212
Tabela 8.8 - Caminho Critico de Transmissão da Barra 3977 - M.Lago-12Gr212
Tabela 8.9 - Caminho Critico de Transmissão da Barra 3978 - M.Lago-8Gr213
Tabela 8.10 - Ramo Crítico do Caminho mais Carregado de Transmissão da

Tabela 8.11 - Tensões e Índices Após a Eliminação de Restrições Violadas e Após a 1ª Iteração nos Geradores da Área 41 e nas Barras de Carga 2625 e 2629 com a Função-Objetivo MXTR217 Tabela 8.12 - Tensões e Índices Após a Eliminação de Restrições Violadas e Após a 1ª Iteração no Tronco de Transmissão de Adrianópolis, Macaé, Campos e Vitória com a Função-Objetivo MXTR......217 Tabela 8.13 - Ramo Crítico do Caminho mais Carregado que Sai da Barra 3978 Tabela 8.14 - Tensões e Índices Após a 1ª Iteração e Após a 2ª Iteração nos Geradores da Área 41 e nas Barras de Carga 2625 e 2629 com a Função-Objetivo MXTR......222 Tabela 8.15 - Tensões e Índices Após a 1ª Iteração e Após a 2ª Iteração no Tronco de Transmissão de Adrianópolis, Macaé, Campos e Vitória Tabela 8.16 - Caminho de Transmissão Mais Carregado e Ramo Crítico Antes de cada Iteração com a Função-Objetivo MXTR223 Tabela 8.17 - Variação de Geração Ativa e Perdas no Sistema Após de cada Iteração com a Função-Objetivo MXTR224 Tabela 8.18 - Tensões e Índices Após a Eliminação de Restrições Violadas e Após a 1^ª Iteração nos Geradores da Área 41 e nas barras de carga 2625 e 2629 com a Função-Objetivo DGMW......225 Tabela 8.19 - Tensões e Índices Após a Eliminação de Restrições Violadas e Após a 1ª Iteração no Tronco de Transmissão de Adrianópolis, Macaé, Campos e Vitória com a Função-Objetivo DGMW225 Tabela 8.20 - Ramo Crítico do Caminho mais Carregado que Sai da Barra 3978 -Tabela 8.21 - Tensões e Índices Após a 1ª Iteração e Após a 2ª Iteração nos Geradores da Área 41 e nas Barras de Carga 2625 e 2629 com a Função-Objetivo DGMW230 Tabela 8.22 - Tensões e Índices Após a 1ª Iteração e Após a 2ª Iteração no Tronco de Transmissão de Adrianópolis, Macaé, Campos e Vitória com a Função-Objetivo DGMW......230 Tabela 8.23 - Caminho de Transmissão Mais Carregado e Ramo Crítico Antes de cada Iteração com a Função-Objetivo DGMW......231 Tabela 8.24 - Variação de Geração Ativa e Perdas no Sistema Após de cada Iteração com a Função-Objetivo DGMW......232

Tabela 8.25 - Tensões e Índices Após Eliminação de Restrições Violadas e Após
1ª e 2ª Iteração no Gerador 1107 - ITAIPU60-9GR e Outros com a
Função-Objetivo MXTR233
Tabela 8.26 - Caminho de Transmissão Mais Carregado e Ramo Crítico Antes
de cada Iteração com a Função-Objetivo MXTR233
Tabela 8.27 - Variação de Geração Ativa, Perdas no Sistema e Variação do
Fluxo no Ramo Crítico Após de cada Iteração com a Função-
Objetivo MXTR234
Tabela 8.28 - Tensões e Índices Após Eliminação de Restrições Violadas e Após
1ª e 2ª Iteração no Gerador 1107 - ITAIPU60-9GR e Outros com a
Função-Objetivo DGMW234
Tabela 8.29 - Caminho de Transmissão Mais Carregado e Ramo Crítico Antes
de cada Iteração com a Função-Objetivo DGMW235
Tabela 8.30 - Variação de Geração Ativa, Perdas no Sistema e Variação do
Fluxo no Ramo Crítico Após de cada Iteração com a Função-
Objetivo DGMW236

Abreviaturas e Siglas

MXTR	Máxima transferência de potência ativa
DGMW	Mínimo desvio de potência ativa
М	Índice de margem de potência em % ou em pu
β	Índice de ângulo entre os vetores gradientes $\nabla P e \nabla Q$
II	Índice de influência da ação de controle sobre a margem de
potência	
φ	Ângulo do fator de potência
ν̈́Ρ	Vetor gradiente de potência ativa
∇Q	Vetor gradiente de potência reativa
LET	Limite de estabilidade de tensão
LEA	Limite estático de estabilidade angular
Zt	Impedância da linha de transmissão
α_t	Ângulo da impedância da linha de transmissão
Z _c	Impedância de carga
EAT	Extra alta tensão
ONS	Operador Nacional do Sistema
OPF	Fluxo de potência ótimo
LTC	Transformador com variação automática de <i>tap</i> s em carga
CS	Compensador síncrono
Pi	Potência ativa injetada na barra i no ponto de operação em
análise	
Qi	Potência reativa injetada na barra i no ponto de operação em
análise	
Si	Potência aparente injetada na barra i no ponto de operação em
análise	
S _m	Estimativa da máxima potência aparente que pode ser injetada na
	barra i no ponto de operação em análise para um sistema multi-
	nó.
S _{io}	Estimativa da máxima potência aparente que pode ser injetada na
	barra i para um sistema duas barras
∆det∗V _i	Relaciona à potência injetada no restante do sistema que limita a
	injeção de potência na barra i

det[D]*V _i	Indica a distância de S_i^2 a S_{io}^2 para um sistema de duas barras
det[D']*V _i	Indica a distância de S_i^2 a S_m^2 para um sistema multi-nó
С	Capacitor
R	Reator
Р	Barra de passagem
SVC	Compensador estático de potência reativa
UTE	Usina Termoelétrica
NF	Norte Fluminense
CEPEL	Centro de Pesquisas Elétricas em Brasil
SAGE	Sistema Aberto de Gerenciamento de Energia
SE	Subestação