

Roberta Bomfim Boszczowski

Avaliação de propriedades mecânicas e hidráulicas de um perfil de alteração de granito-gnaisse de Curitiba, PR

Tese de Doutorado

Tese apresentada ao Programa de Pós-graduação em Engenharia Civil da PUC-Rio como requisito parcial para obtenção do título de Doutor em Engenharia Civil.

Orientador: Tácio Mauro Pereira de Campos

Roberta Bomfim Boszczowski

Avaliação de propriedades mecânicas e hidráulicas de um perfil de alteração de granito-gnaisse de Curitiba, PR

Tese apresentada ao Programa de Pós-graduação em Engenharia Civil da PUC-Rio como requisito parcial para obtenção do título de Doutor em Engenharia Civil. Aprovada pela Comissão Examinadora abaixo assinada.

Tácio Mauro Pereira de Campo Presidente/Orientador Departamento de Engenharia Civil - PUC-Rio

> George de Paula Bernardes UNESP – Guaratinguetá

> > Orêncio Monje Vilar USP – São Carlos

Luiz Antonio Bressani UFRGS

Cláudio Palmeiro do Amaral PUC-Rio

Prof. Jose Eugenio Leal Coordenador de Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 25 de abril de 2008.

Roberta Bomfim Boszczowski

Graduou-se em Engenharia Civil pela Universidade Federal do Paraná - UFPR em 1998. Obteve o título de Mestre em Engenharia Civil, área de concentração de Geotecnia, pela PUC-Rio. Principais áreas de interesse e linhas de pesquisa: Mecânica dos Solos, Geotecnia Experimental e Geotecnia Ambiental.

Ficha Catalográfica

Boszczowski, Roberta Bomfim

Avaliação de propriedades mecânicas e hidráulicas de um perfil de alteração de granito-gnaisse de Curitiba, PR / Roberta Bomfim Boszczowski; orientador: Tácio Mauro P. de Campos – Rio de Janeiro: PUC, Departamento de Engenharia Civil, 2008.

577 f.; 30 cm

1. Tese (doutorado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Civil.

Inclui referências bibliográficas

- 1. Perfil de intemperismo; 2. solo residual; 3. granito-gnaisse; 4. propriedades mecânicas; 5. Propriedades hidráulicas.
- I. de Campos, Tácio M. P. (Tácio Mauro Pereira). II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Civil. V. Título.

Jamais para mim a bandeira abaixada, jamais a última tentativa

SIR ERNEST SHACKLETON

Agradecimentos

Essa pesquisa foi conduzida ao longo de cinco anos e essa surpreendente trajetória do "descobrir e aprender" muitos amigos percorreram comigo. Todos estão lembrados aqui. Sou imensamente grata.

Ao Professor Tácio M. Pereira de Campos, que sempre me orientou e apoiou no Mestrado e, sempre com a mesma dedicação, atenção e paciência no Doutorado novamente.

Ao LAME – Laboratório de Materiais e Estruturas, unidade do LACTEC – Instituto de Tecnologia para o Desenvolvimento e à UFPR – Universidade Federal do Paraná, onde todo o trabalho experimental foi realizado. Em especial aos Gerentes Paulo Chamecki e Ruy Dikran Steffen, que sempre apoiaram meu trabalho e seguraram as pontas durante a minha estada de um ano no Rio de Janeiro. Sem esquecer Luiz Alkimin de Lacerda, meu "novo chefe", pelo estímulo, amizade e principalmente pelo bom ouvinte que é. Estendo os agradecimentos a todos os integrantes do LAME que de alguma forma ajudaram na realização deste trabalho.

Aos técnicos do Laboratório de Solos Valdevan Santos, Alex Gislon e Celso de Souza Amarante. Sem eles não haveriam tantas amostras.

Aos estagiários do LAME Carla Caroline Alessi, Carolina Bacarim Pavan, Liz Mara Penido, Guilherme Slongo, Plinio Romano Neto, Talita Scussiato, Bianca Penteado de Almeida, Tiago Augusto Ceccon, Hyllttonn Wyktor Bazan, Pedro de Carvalho Thá e Marcelo Miqueletto que trabalharam ativamente para o "levantamento geotécnico" do talude, nas subidas e descidas do andaime para a coleta de amostras e ensaios de laboratório. Foram inesquecíveis idas e vindas à Santa Felicidade.

À Andressa de Fátima da Rocha Pontes, Marcelo Buras, Thais Kravetz de Castro, Marianne Bara de Araujo Grube, Paulo Roberto Selenko e Monize Siqueira, que nessa reta final foram fundamentais para a existência desse volume.

Aos professores Fernando Marinho, George Bernardes, Roberto Azevedo e E.

Vargas que corrigiram e apresentaram sugestões importantes no exame de proposta de tese.

Aos geólogos Pio Fiori, Leonardo Cordeiro Santos e Cláudio Amaral, pelas visitas ao talude, descrições geológicas e discussões geotécnicas.

Ao professor Franklin dos Santos Antunes pela amizade, pelos conselhos e pela disposição de ajudar sempre.

À Laryssa Petry Ligocki e Elisangela do Prado Oliveira, companheiras de jornada de talude. Muito obrigada amigas! Não desistimos nunca!

Ao Alessander pela companhia constante, por me ajudar de todas as formas, pela fé inabalável no trabalho e na pesquisa.

Á minha família, pai, mão, irmãos, pelo incentivo, estímulo e por estarem sempre presentes.

Resumo

Boszczowski, Roberta Bomfim; de Campos, Tácio Mauro Pereira. Avaliação de propriedades mecânicas e hidráulicas de um perfil de alteração de granito-gnaisse de Curitiba, PR. Rio de Janeiro, 2008. 577p. Tese de Doutorado - Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

Um perfil de alteração de granito-gnaisse é estudado objetivando um melhor conhecimento das propriedades mecânicas e hidráulicas de solos residuais. A feição estudada encontra-se no município de Campo Magro, região Metropolitana de Curitiba. A região situa-se na borda da Bacia de Curitiba, acima de 900 metros, fortemente sujeita aos fenômenos tectônicos que deram origem à calha da Bacia. As investigações geotécnicas contemplam a caracterização física, química e mineralógica dos materiais. O comportamento dos solos no estado compactado e indeformado é analisado. Curvas características de sucção e de resistividade fornecem dados que auxiliam no entendimento das propriedades hidráulicas. A influência do intemperismo e da sucção são avaliados na resistência à tração e na resistência à compressão não confinada. Parâmetros de resistência em cinco diferentes níveis de intemperismo são apresentados. Ensaios de adensamento fornecem parâmetros de quebra da estrutura (yelding) dos solos. O comportamento tensão-deformação do solo mais intemperizado, no estado não saturado, é analisado através de ensaios triaxiais com medida de deformação local, em compressão axial com tensão controlada e deformação controlada. As conclusões da pesquisa permitem identificar a variabilidade de comportamento de resistência e compressibilidade, efeito do material de origem e intemperismo a que os solos foram submetidos.

Palavras-chave

Perfil de intemperismo; solo residual; granito-gnaisse; propriedades mecânicas; propriedades hidráulicas; intemperismo.

Abstract

Boszczowski, Roberta Bomfim; de Campos, Tácio Mauro Pereira. Evaluation of mechanical and hydraulic properties of a granitegnaiss weathering profile from Curitiba, PR. Rio de Janeiro, 2008. 577p. DSc. Thesis – Civil Eng. Dept., Pontifícia Universidade Católica do Rio de Janeiro.

A granite-gneiss weathering profile is studied with the aim of achieving a better understanding of mechanical and hydraulic properties of residual soils. The site in focus is located at the city of Campo Magro, in Curitiba Metropolitan Area. The region under research lies at the border of Curitiba Basin, above 900 m of elevation, and it was heavily influenced by tectonic events that originated the basin. The geotechnical investigation comprised physical, chemical and mineralogical characterization. The soil behavior was assessed in both natural and compacted conditions. Suction and resistivity characteristic curves provide useful information for assessing the hydraulic properties. The weathering degree and suction levels influence are assessed in respect to unconfined compressive and tensile strength. The resistance properties are analyzed according five distinct weathering degrees. Consolidation tests are used for identifying yielding stress levels. Unsaturated triaxial tests with local strain measurements in both stress and strain control conditions are used to study the deformation behavior of the most weathered soil. The conclusions provide an overall assessment of the soil strength and compressibility variability, origin material influence and weathering evolution effects.

Keywords

Weathering profile, residual soil, granite-gneiss, mechanical properties, hydraulic properties.

Sumário

1 Introdução	56
2 Solos Não Saturados	59
2.1. Introdução	59
2.2. Relação Umidade-Sucção	60
2.2.1. Modelagem Matemática	69
2.2.2. Fatores de Influência	71
2.2.3. Métodos de Previsão	73
2.3. Condutividade Hidráulica	74
2.4. Variáveis de Estado de Tensão	79
2.5. Resistência ao Cisalhamento	82
2.6. Resistência à Tração	92
2.6.1. Rumpf, 1961	97
2.6.2. Schubert, 1982	99
2.6.3. Molenkamp e Nazemi, 2003	103
2.6.4. Exemplos de Aplicação	105
2.7. Compressibilidade	114
2.8. Modelos Constitutivos	115
3 Solos Residuais	120
3.1. Introdução	120
3.2. Aspectos Mineralógicos e Químicos	121
3.3. Estrutura	123
3.4. Compressibilidade e Rigidez	130
3.5. Resistência	135
4 Local do Estudo	144
4.1. Geologia Local	147
4.2. Coleta de Amostras	154
4.3. Feições Observadas	169
4.4. Coleta de Amostras de Rocha	174
5 Investigação Experimental: Caracterização dos Solos	178

5.1. Amostras Utilizadas e Programa de Ensaios	178
5.2. Caracterização Física, Química, Mineralógica e Microestrutural	189
5.2.1. Caracterização e Índices Físicos	189
5.2.2. Porosimetria de Mercúrio	208
5.2.3. Caracterização de Amostras Compactadas	212
5.2.4. Caracterização Química	220
5.2.5. Caracterização Mineralógica	228
5.2.6. Caracterização Microestrutural	232
5.3. Variação dos Índices Físicos com Processos de Secagem e	
Umedecimento	235
5.4. Conclusões	246
6 Investigação Experimental: Propriedades Hidráulicas	249
6.1. Curvas de Retenção	249
6.1.1. O Método do Papel Filtro: Resultados Experimentais	262
6.1.2. Porosimetria de Mercúrio: Resultados Experimentais	298
6.2. Curvas de Resistividade Elétrica	303
6.2.1. Ensaio de Resistência à Passagem de Corrente Elétrica	315
6.2.2. Avaliação da Influência da Estrutura na Resistividade Elétrica	328
6.2.3. Avaliação da Influência dos Íons na Resistividade Elétrica	335
6.2.4. Relação entre Resistividade e Sucção	356
6.3. Condutividade Hidráulica	363
6.3.1. Permeabilidade à Carga Variável	364
6.4. Conclusões	367
7 Compressibilidade	370
7.1. Ensaio de Adensamento Inundado em Amostras Indeformadas	370
7.2. Ensaio de Adensamento em Amostras Desestruturadas	381
7.3. Ensaio de Adensamento Não-Saturado em Amostras	
Indeformadas do Solo Marrom	386
7.4. Conclusões	393
8 Investigação Experimental: Resistência à Compressão e Tração	395
8.1. Solos Compactados	396
8.1.1. Moldagem dos corpos-de-prova	396
8.1.2. Resistência ao Cisalhamento	397
8.1.3. Resistência à Tração	431

8.2. Solos Indeformados	446
8.2.1. Resistência ao Cisalhamento	447
8.2.2. Resistência à Tração	483
8.3. Avaliação dos Resultados: Amostras Compactadas x Amostras	
indeformadas	501
8.3.1. Resistência à Compressão Não-Confinada	501
8.3.2. Resistência à Tração	515
8.4. Avaliação da Resistência em função do Intemperismo	533
8.4.1. Resistência Saturada	533
8.4.2. Resistência não Saturada	539
8.5. Conclusões	546
9 Investigação Experimental: Comportamento sob o Estado de Tensões	
Triaxiais	549
9.1. Ensaios Triaxiais Saturados	550
9.1.1. Equipamento Utilizado	550
9.1.2. Metodologia Empregada	554
9.1.3. Resultados Obtidos	556
9.1.4. Comportamento Tensão-Deformação	564
9.1.5. Resistência ao Cisalhamento	571
9.2. Ensaios Triaxiais Não Saturados	578
9.2.1. Equipamento Utilizado	578
9.2.2. Metodologia Empregada	579
9.2.3. Resultados Obtidos	581
9.2.4. Comportamento Tensão-Deformação	592
9.2.5. Resistência ao Cisalhamento	604
9.3. Conclusões	607
10 Conclusões e Sugestões para Futuros Trabalhos	610
10.1. Conclusões	610
10.1.1. Caracterização	610
10.1.2. Propriedades Hidráulicas	612
10.1.3. Compressibilidade	613
10.1.4. Resistência à Tração	614
10.1.5. Resistência ao Cisalhamento	615
10.2. Sugestões para Futuros Trabalhos	617

Lista de Figuras

Figura 2.1 – Aspectos da curva característica para diferentes tipos de solo. 61
Figura 2.2 – Valores de sucção osmótica teóricos baseados em
concentração de sais (Fredlund, 2002).
Figura 2.3 – Influência dos componentes da sucção dos solos nas diferentes
faixas de sucção (Fredlund, 2002).
Figura 2.4 – Variação de sucção osmótica com o teor de umidade. (a) Teor
de umidade versus sucção total e matricial. (b) Sucção osmótica versus teor
de umidade (Sreedeep e Singh, 2006).
Figura 2.5 - Sucção osmótica determinada através da diferença entre
sucção total e sucção osmótica (símbolos sólidos) e aqueles determinados
pela concentração de NaCl (símbolos vazados) (Miller e Nelson, 2006).
Figura 2.6 – Curva característica típica mostrando zonas de dessaturação. 65
Figura 2.7 – Relação entre as fases sólida, líquida e gasosa na condição de
estado residual. 66
Figura 2.8 - Descrição das curvas de secagem e de umedecimento e o
estado inicial do solo em campo (Fredlund, 2002).
Figura 2.9 – Influência do estado inicial das amostras na curva característica
(Fredlund, 2002). 71
Figura 2.10 – Influência do (a) adensamento e (b) da compactação na curva
de retenção (Barbour, 1998; Vanapalli et al., 1999).
Figura 2.11 – Influência da textura do solo na curva de retenção (Barbour,
1998; Vanapalli et al., 1999).
Figura 2.12 - Influência do grau de saturação na permeabilidade de uma
argila siltosa compactada em diversas umidades (Das, 1983).
Figura 2.13 – Esquema de funções de permeabilidade e curvas
características para uma areia e um silte argiloso (Fredlund, 2000).
Figura 2.14 - Variável de estado de tensão para um solo não saturado
(Farias, 2004).
Figura 2.15 - Representação tridimensional da resistência de solos não
saturados em função das variáveis de tensão.
Figura 2.16 – Variações na coesão e no ângulo de atrito com a sucção

(Delage e Graham, 1995).
Figura 2.17 – Relação entre o parâmetro de ajuste k e o índice de
plasticidade (Vanapalli e Fredlund, 2000).
Figura 2.18 - Representação do ensaio de compressão simples a um
determinado nível de sucção. 90
Figura 2.19 – Aplicação do modelo proposto por Vanapalli et al. (1996) aos
ensaios realizados no teor de umidade ótima por Oliveira (2004). 91
Figura 2.20 – Estados de Saturação em Solos não Saturados. (a) Residual.
(b) de Transição. (c) Capilar ou Limite. 93
Figura 2.21 – Menisco entre duas esferas de mesmo raio. (a) geometria do
menisco. (b) diagrama de forças atuantes sobre a esfera (Likos e Lu, 2004). 95
Figura 2.22 – Tensão superficial da interface ar-água em função da
temperatura (Lu e Likos, 2004). 96
Figura 2.23 – Geometria do menisco para determinação das forças de tração
entre duas partículas de mesmo tamanho (Goulding, 2006). 97
Figura 2.24 – Esferas uniformes em orientação cúbica. 98
Figura 2.25 – Resistência à tração teórica para partículas esféricas em
ordem cúbica em função do tamanho das partículas. 99
Figura 2.26 - Resistência à tração de um calcário (Schubert, 1982 apud
Heibrock et al., 2004).
Figura 2.27 – Esferas com "ponte líquida". Força de contato versus forma de
contato e razão entre o volume da "ponte líquida" e o volume da esfera
VL/Vs (Schubert, 1982 apud Zeh, 2007). 103
Figura 2.28 – Determinação do ângulo de contato □ em função da pressão
capilar adimensional. (a) Contato esfera-esfera. (b) Contato esfera-plano
(Schubert, 1982 apud Zeh, 2007).
Figura 2.29 – Determinação da força entre partículas em função do ângulo
de contato $\tilde{\square}(a)$ Contato esfera-esfera. (b) Contato esfera-plano (Schubert,
1982 apud Zeh, 2007). 102
Figura 2.30 - Geometria da ponte líquida entre duas esferas de mesmo
tamanho e forças atuando sobre ela (Molenkamp e Nazemi, 2003).
Figura 2.31 – Relação entre a curva característica de resistência à tração e a
curva característica de sucção para uma areia fina (Lu et al., 2007).
Figura 2.32 – Dados experimentais para resistência à tração para a areia A
(Lu et al., 2007).
Figura 2.33 – Dados experimentais para resistência à tração para a areia B

(Lu et al., 2007).	108
Figura 2.34 - Curva característica para a areia F-40, e = 0,60 (Goulding,	,
2006).	109
Figura 2.35 - Curva característica para a areia F-40, e = 0,75 (Goulding,	,
2006).	109
Figura 2.36 - Resistência à tração para a areia Ottawa F-40 (Goulding,	,
2006).	109
Figura 2.37 - Curva característica para a areia F-55, e = 0,60 (Goulding,	,
2006).	110
Figura 2.38 - Curva característica para a areia F-55, e = 0,75 (Goulding,	,
2006).	110
Figura 2.39 - Resistência à tração para a areia Ottawa F-55 (Goulding,	,
2006).	110
Figura 2.40 - Curva característica para a areia F-75, e = 0,60 (Goulding,	,
2006).	111
Figura 2.41 – Curva característica para a areia F-75, e = 0,75 (Goulding,	,
2006).	111
Figura 2.42 – Resistência à tração para a areia Ottawa F-75 (Goulding,	,
2006).	111
Figura 2.43 – (a) Curva característica da argila Plessa compactada no teor	-
de umidade ótimo. (b) Resistência à tração da argila Plessa em função da	l
sucção matricial e da forma de compactação (Zeh, 2007).	113
Figura 2.44 – Extensão do Modelo Cam-Clay para solo não saturados.	116
Figura 3.1 – Mobilização de Fe, Al, e Si em função do pH das soluções de	;
alteração (Modificado de Camapum de Carvalho, 2004).	122
Figura 3.2 – Ponto de plastificação da estrutura por compressão triaxial.	
Ensaio triaxial em solo residual de arenito Botucatu (Martins, 1994).	126
Figura 3.3 – Comportamento tensão versus deformação associado aos	;
diferentes modos de plastificação da estrutura (Maccarini, 1987).	127
Figura 3.4 – Plastificação de solos cimentados e rochas brandas (Malandraki	İ
e Toll, 2001).	128
Figura 3.5 – Modelos de comportamento idealizados em função das	;
diferenças observadas para (a) materiais fortemente estruturados. (b))
materiais fracamente estruturados (Martins, 2001).	130
Figura 3.6 – Correlação geral de Cc e σ'vy com o índice de vazios inicial.	132
Figura 3.7 – Módulo tangente inicial a partir de ensaios triaxiais drenados	;

(Maccailli, 1993).	134
Figura 3.8 - Resultados de ensaios triaxiais drenados. (a) Solo residua	I
indeformado fracamente cimentado. (b) Solo residual indeformado)
fortemente cimentado. (Maccarini, 1993).	135
Figura 3.9 - Envoltórias de resistência obtidas para as sucções ensaiadas	}
para o solo jovem (Reis, 2004).	137
Figura 3.10 – Envoltórias de resistência obtidas para as sucções ensaiadas	}
para o solo maduro (Reis, 2004).	137
Figura 3.11 – Variação da coesão em função da sucção matricial para o solo)
jovem (Reis, 2004).	138
Figura 3.12 – Variação da coesão em função da sucção matricial para o solo)
maduro (Reis, 2004).	138
Figura 3.13 – Envoltórias de resistência obtidas para as sucções ensaiadas	3
para o solo de 1 metro (Futai, 2002).	139
Figura 3.14 – Envoltórias de resistência obtidas para as sucções ensaiadas	3
para o solo de 5 metros (Futai, 2002).	140
Figura 4.1 - Localização da área de estudo.	145
Figura 4.2 - Fábrica COM-KRAFT. Vista Geral do Talude.	145
Figura 4.3 – Vista geral da pedreira.	146
Figura 4.4 – Feições observadas na pedreira.	146
Figura 4.5 – Localização da Bacia Sedimentar de Curitiba (E. Salamuni e R	
Salamuni, 1999).	147
Figura 4.6 - Mapa morfoestrutural do embasamento da Bacia de Curitiba	ì
(Salamuni, 1998).	150
Figura 4.7 - Modelo digital de Terreno mostrando a superfície topográfica	ì
atual da Bacia Sedimentar de Curitiba (Salamuni, 1998).	150
Figura 4.8 - Carta geoambiental da região de Curitiba (CPRM, 1997	,
modificado).	152
Figura 4.9 - Mapa geológico estrutural da Bacia Sedimentar de Curitiba e	;
Região Metropolitana (Salamuni, 1998).	153
Figura 4.10 – Área de coleta de amostras no talude.	154
Figura 4.11 - Coleta de amostras em dezembro de 2004.	156
Figura 4.12 - Coleta de amostras em tubos de PVC.	156
Figura 4.13 – Plano de fraqueza.	156
Figura 4.14 - Coleta de amostras em julho de 2005.	157
Figura 4.15 - Coleta de amostras em poco em agosto de 2005.	158

Figura 4.16 – Campanha de coleta em julho de 2007.
Figura 4.17 – Talude: feições observadas no solo de cor branca. (a) Textura
granular, essencialmente quartzo-feldspática. (b) Solo de coloração
predominantemente branca com pontos amarelos, marrons e cinzas. (c)
Manchas ferruginosas de textura mais fina, evidência de cisalhamento. (d)
Evidências de fraturas reliquiares. (e) Bloco de solo com veio e mancha
ferruginosa. (f) Bloco desprendido da massa do talude. 170
Figura 4.18 – Talude: feições observadas no solo de cor amarela. (a)
Textura siltosa de cor amarela clara. (b) Solo amarelo claro com manchas
em vários tons. (c) Solo amarelo claro com manchas em vários tons. (d) Solo
amarelo escuro com veio preto. 171
Figura 4.19 – Talude: feições observadas no solo de cor laranja. 172
Figura 4.20 – Talude: feições observadas no solo de cor vermelha.
Figura 4.21 – Talude: feições observadas no solo de cor marrom. (a) Textura
silto-argilosa, aproximadamente 1 metro abaixo do nível do terreno. (b)
Eventualmente há a presença de raízes. (c) Um pouco pegajoso quando
úmido. 173
Figura 4.22 – Talude: feições observadas na rocha aflorante. 174
Figura 4.23 – Execução de sondagem rotativa. Testemunhos obtidos. 175
Figura 4.24 – Imagem petrográfica da rocha (amostra R01). Aumento de 50
vezes. Luz plana. Cl – Clorita; Mu – Muscovita; P – Plagioclásio; Mi –
Microclina; Q – Quartzo (Oliveira, 2006).
Figura 4.25 – Difratograma da rocha (fração total pulverizada – amostra
R01) sem tratamento. I – Ilita; K – Caolinita; Ab – Albita; Mu – Muscovita; Ep
– Epidoto; He – Hematita; Q – Quartzo; Mi – Microclina (Oliveira, 2006).
Figura 5.1 – Variação de cores das amostras coletadas. 179
Figura 5.2 – Solo Marrom. 180
Figura 5.3 – Vista geral do talude e da divisão de camadas. 180
Figura 5.4 – Amostras deformadas coletadas no talude. (a) 2.4520.05
Branco. (b) 2.4521.05 Amarelo. (c) 2.4522.05 Vermelho. (d) 2.4523.05
Vermelho. (e) 2.4524.05 Branco. (f) 2.4525.05 Branco. (g) 2.4526.05
Amarelo. (h) 2.4527.05 Amarelo. (i) 2.4528.05 Laranja. 190
Figura 5.5 – Curvas granulométricas das amostras deformadas do talude. 196
Figura 5.6 – Variação do teor de umidade natural, limite de liquidez e limite
de plasticidade ao longo da profundidade do talude. 198
Figura 5.7 – Variação da Massa Específica Natural com a profundidade do

talude.	199
Figura 5.8 - Variação da Massa Específica Real dos Grãos com a	ì
profundidade do talude.	199
Figura 5.9 – Variação do Índice de Vazios com a profundidade do talude.	201
Figura 5.10 - Variação das frações pedregulho, areia, silte e argila com a	ì
profundidade do talude.	201
Figura 5.11 – Relação entre os teores de argila e silte e os limites de liquidez	<u> </u>
e plasticidade.	202
Figura 5.12 - Variação do índice de atividade de Skempton com a	ì
profundidade do talude.	202
Figura 5.13 – Curvas granulométricas de solos brancos.	203
Figura 5.14 - Localização das amostras de cor branca (em vermelho) e)
transição branco – amarelo (em verde) na primeira coleta.	204
Figura 5.15 – Curvas granulométricas de solos amarelos.	205
Figura 5.16 – Curvas granulométricas de solos alaranjados.	205
Figura 5.17 – Curvas granulométricas de solos Vermelhos.	206
Figura 5.18 – Curvas granulométricas de solos Marrons.	206
Figura 5.19 – Posição dos solos na Carta de Plasticidade.	207
Figura 5.20 - Distribuição acumulativa dos diâmetros dos poros (Oliveira	,
2006).	209
Figura 5.21 – Distribuição incremental dos diâmetros dos poros -	-
(Classificação dos espaços porosos segundo IUPAC) (Oliveira, 2006).	212
Figura 5.22 – Curva granulométrica do solo Branco.	214
Figura 5.23 – Curva granulométrica do solo Amarelo.	214
Figura 5.24 – Curva granulométrica do solo Laranja.	214
Figura 5.25 – Curva granulométrica do solo Vermelho.	215
Figura 5.26 – Curva granulométrica do solo Marrom.	216
Figura 5.27 – Curva de compactação do solo Branco.	216
Figura 5.28 – Curva de compactação do solo Amarelo.	217
Figura 5.29 – Curva de compactação do solo Laranja.	217
Figura 5.30 – Curva de compactação do solo Vermelho.	218
Figura 5.31 – Curva de compactação do solo Marrom.	218
Figura 5.32 – Curvas de compactação dos solos estudados.	219
Figura 5.33 - Variação dos compostos SiO2, Al2O3, Fe2O3 e K2O com a	ì
profundidade.	225
Figura 5.34 – Variação da superfície específica com a profundidade.	226

Figura 5.35 – Variação dos íons cloretos, nitratos e sulfatos com a	
profundidade.	228
Figura 5.36 – Difratograma do Solo Marrom (fração silte amostra 2.4108.05)	
sem tratamento. I: ilita; K: caulinita; Mu: muscovita; Q: quartzo; Mi: Microclina	
(Oliveira, 2006).	229
Figura 5.37 – Difratograma do Solo Vermelho (fração argila amostra	
2.4523.05) sem tratamento. I: ilita; K: caulinita; Ti: titanita; Q: quartzo; Mi:	
Microclina; Ep: epídoto (Oliveira, 2006).	229
Figura 5.38 – Difratograma do Solo Laranja (fração silte amostra 2.4528.05)	
sem tratamento. I: ilita; K: caulinita; Ti: titanita; Q: quartzo; Mi: Microclina; Ep:	
epídoto; Mu: muscovita; Ab: albita; Bi: biotita (Oliveira, 2006).	230
Figura 5.39 – Difratograma do Solo Amarelo (fração silte amostra 2.4521.05)	
sem tratamento. E: esmectita; I: ilita; K: caulinita; Ti: titanita; Tu: turmalina;	
Q: quartzo; Mi: Microclina; Ep: epídoto; Mu: muscovita; Ab: albita; Bi: biotita	
He: hematita (Oliveira, 2006).	230
Figura 5.40 – Difratograma do Solo Branco (fração silte amostra 2.4524.05)	
sem tratamento. E: esmectita; I: ilita; K: caulinita; Q: quartzo; Mi: Microclina;	
Ep: epídoto; Mu: muscovita; Ab: albita (Oliveira, 2006).	231
Figura 5.41 – Fotomicrografia do solo Marrom. Aumento de 25 vezes. Luz	
plana. (a) Macroporo (1 mm) em forma de canal. (b) Óxidos precipitados.	233
Figura 5.42 – Fotomicrografia do solo Laranja. Aumento de 25 vezes. Luz	
plana. (a) Microporos. (b) Microporos, bem como quartzos possivelmente	
recristalizados alinhados e óxidos de ferro precipitados formando faixas.	234
Figura 5.43 – Fotomicrografia do solo Amarelo. Aumento de 25 vezes. Luz	
plana. (a) Plagioclásio alterado. (b) Epidoto alterado.	234
Figura 5.44 – Fotomicrografia do solo Branco. Aumento de 25 vezes. Luz	
plana. (a) Quartzo. (b) Mineral se alterando.	235
Figura 5.45 – Variação do Peso Específico Seco com o Índice de Vazios	
para todos os solos.	236
Figura 5.46 - Relação entre o Teor de Umidade Volumétrico e Teor de	
Umidade Gravimétrico para todas as amostras.	237
Figura 5.47 - Relação entre o Teor de Umidade Volumétrico e Teor de	
Umidade Gravimétrico para o solo Branco.	237
Figura 5.48 - Relação entre o Teor de Umidade Volumétrico e Teor de	
Umidade Gravimétrico para o solo Amarelo.	238
Figura 5.49 - Relação entre o Teor de Umidade Volumétrico e Teor de	

Umidade Gravimétrico para o solo Laranja.	238
Figura 5.50 - Relação entre o Teor de Umidade Volumétrico e Teor de	9
Umidade Gravimétrico para o solo Vermelho.	238
Figura 5.51 - Relação entre o Teor de Umidade Volumétrico e Teor de	9
Umidade Gravimétrico para o solo Marrom.	239
Figura 5.52 – Variação do Índice de Vazios com o Grau de Saturação para o)
solo Branco.	240
Figura 5.53 – Variação do Índice de Vazios com o Grau de Saturação para o)
solo Amarelo.	240
Figura 5.54 – Variação do Índice de Vazios com o Grau de Saturação para o)
solo Laranja.	241
Figura 5.55 – Variação do Índice de Vazios com o Grau de Saturação para o)
solo Vermelho.	241
Figura 5.56 – Variação do Índice de Vazios com o Grau de Saturação para o)
solo Marrom.	241
Figura 5.57 – Variação do índice de vazios versus teor de umidade de	9
amostras indeformadas.	243
Figura 5.58 - Corpos-de-prova após secagem ao ar. (a) Branco. (b)
Amarelo. (c) Laranja. (d) Marrom.	244
Figura 6.1 – Esquema da placa de sucção.	251
Figura 6.2 – Sistema de placa de pressão (Vanapalli et al., 2002).	252
Figura 6.3 – Princípio de medida de sucção através da centrífuga (Khanzode	9
et al., 1999 e 2000).	253
Figura 6.4 – Componentes básicos de um tensiômetro.	254
Figura 6.5 – Esquema do mini-tensiômetro desenvolvido pelo Imperia	ıl
College (www.geo-observations.com).	254
Figura 6.6 – Dessecador de vazios para controlar o teor de umidade pela	3
pressão de vapor.	255
Figura 6.7 – Sensor de Condutividade Térmica AGWA-II (Vanapalli et al.	,
2002).	258
Figura 6.8 – Comparação entre diferentes técnicas de controle de sucção)
(Fleureau et al., 1993 apud Delage, 2002).	260
Figura 6.9 – Esquema da interface ar-água e mercúrio-ar (Aung et al., 2001).	. 261
Figura 6.10 - Curva de retenção do solo Branco utilizando o método do)
papel filtro. (a) Sucção Matricial. (b) Sucção Total.	263
Figura 6.11 – Curva de retenção do solo Amarelo utilizando o método do	1

papel filtro. (a) Sucção Matricial. (b) Sucção Total.	263
Figura 6.12 - Curva de retenção do solo Laranja utilizando o método do)
papel filtro. (a) Sucção Matricial. (b) Sucção Total.	264
Figura 6.13 - Curva de retenção do solo Vermelho utilizando o método do)
papel filtro. (a) Sucção Matricial. (b) Sucção Total.	264
Figura 6.14 - Curva de retenção do solo Marrom utilizando o método do)
papel filtro. (a) Sucção Matricial. (b) Sucção Total.	264
Figura 6.15 – Ajuste da curva de retenção do solo Branco. (a) Fredlund e)
Xing (1994). (b) van Genutchen (1980).	266
Figura 6.16 – Ajuste da curva de retenção do solo Amarelo. (a) Fredlund e)
Xing (1994). (b) van Genutchen (1980).	267
Figura 6.17 – Ajuste da curva de retenção do solo Laranja. (a) Fredlund e)
Xing (1994). (b) van Genutchen (1980).	268
Figura 6.18 – Ajuste da curva de retenção do solo Laranja desconsiderando)
valor do teor de umidade saturado definido previamente. (a) Fredlund e Xing	J
(1994). (b) van Genutchen (1980).	269
Figura 6.19 – Ajuste da curva de retenção do solo Vermelho. (a) Fredlund e	;
Xing (1994). (b) van Genutchen (1980).	270
Figura 6.20 - Ajuste da curva de retenção do solo Vermelho em formato)
bimodal	271
Figura 6.21 – Ajuste da curva de retenção do solo Marrom. (a) Fredlund e	;
Xing (1994). (b) van Genutchen (1980).	272
Figura 6.22 - Ajuste da curva de retenção do solo Marrom em formato tri-	-
modal.	273
modal. Figura 6.23 – Relação entre a capacidade de sucção e o limite de liquidez	
Figura 6.23 – Relação entre a capacidade de sucção e o limite de liquidez	<u>z</u> 274
Figura 6.23 – Relação entre a capacidade de sucção e o limite de liquidez para as amostras indeformadas.	<u>z</u> 274
Figura 6.23 – Relação entre a capacidade de sucção e o limite de liquidez para as amostras indeformadas. Figura 6.24 – Comparação entre os dados de sucção matricial dos solos	z 274 s
Figura 6.23 – Relação entre a capacidade de sucção e o limite de liquidez para as amostras indeformadas. Figura 6.24 – Comparação entre os dados de sucção matricial dos solos indeformados.	274 375 275
Figura 6.23 – Relação entre a capacidade de sucção e o limite de liquidez para as amostras indeformadas. Figura 6.24 – Comparação entre os dados de sucção matricial dos solos indeformados. Figura 6.25 – Dados de sucção total dos solos indeformados.	274 3 275 275
Figura 6.23 – Relação entre a capacidade de sucção e o limite de liquidez para as amostras indeformadas. Figura 6.24 – Comparação entre os dados de sucção matricial dos solos indeformados. Figura 6.25 – Dados de sucção total dos solos indeformados. Figura 6.26 – Valores de sucção osmótica.	274 3 275 275 276
Figura 6.23 – Relação entre a capacidade de sucção e o limite de liquidez para as amostras indeformadas. Figura 6.24 – Comparação entre os dados de sucção matricial dos solos indeformados. Figura 6.25 – Dados de sucção total dos solos indeformados. Figura 6.26 – Valores de sucção osmótica. Figura 6.27 – Variação dos índices físicos para o solo Branco.	274 3 275 275 276 278 278
Figura 6.23 – Relação entre a capacidade de sucção e o limite de liquidez para as amostras indeformadas. Figura 6.24 – Comparação entre os dados de sucção matricial dos solos indeformados. Figura 6.25 – Dados de sucção total dos solos indeformados. Figura 6.26 – Valores de sucção osmótica. Figura 6.27 – Variação dos índices físicos para o solo Branco. Figura 6.28 – Variação dos índices físicos para o solo Amarelo.	274 275 275 275 276 278 278
Figura 6.23 – Relação entre a capacidade de sucção e o limite de liquidez para as amostras indeformadas. Figura 6.24 – Comparação entre os dados de sucção matricial dos solos indeformados. Figura 6.25 – Dados de sucção total dos solos indeformados. Figura 6.26 – Valores de sucção osmótica. Figura 6.27 – Variação dos índices físicos para o solo Branco. Figura 6.28 – Variação dos índices físicos para o solo Amarelo. Figura 6.29 – Variação dos índices físicos para o solo Laranja.	274 275 275 275 276 278

compactado. (a) Método do papel filtro. (b) Ajuste por Fredlund e Xing (1994)
e van Genutchen (1980).
Figura 6.33 - Curva de retenção de sucção matricial do solo Amarelo
compactado. (a) Método do papel filtro. (b) Ajuste por Fredlund e Xing (1994)
e van Genutchen (1980).
Figura 6.34 – Curva de retenção de sucção matricial do solo Laranja
compactado. (a) Método do papel filtro. (b) Ajuste por Fredlund e Xing (1994)
e van Genutchen (1980).
Figura 6.35 - Curva de retenção de sucção matricial do solo Vermelho
compactado. (a) Método do papel filtro. (b) Ajuste por Fredlund e Xing (1994)
e van Genutchen (1980).
Figura 6.36 - Curva de retenção de sucção matricial do solo Marrom
compactado. (a) Método do papel filtro. (b) Ajuste por Fredlund e Xing (1994)
e van Genutchen (1980).
Figura 6.37 – Sucção matricial dos solos compactados. 293
Figura 6.38 - Sucção do solo Branco para o estado indeformado e
compactado. 295
Figura 6.39 - Sucção do solo Amarelo para o estado indeformado e
compactado. 296
Figura 6.40 - Sucção do solo Laranja para o estado indeformado e
compactado. 297
Figura 6.41 – Sucção do solo Vermelho para o estado indeformado e
compactado. 297
Figura 6.42 - Sucção do solo Marrom para o estado indeformado e
compactado. 298
Figura 6.43 – Curvas características solo-ar para os solos residuais
estudados. 299
Figura 6.44 – Curva característica obtida através do ensaio de porosimetria
e do ensaio com papel filtro para o solo Branco.
Figura 6.45 – Curva característica obtida através do ensaio de porosimetria
e do ensaio com papel filtro para o solo Amarelo. 301
Figura 6.46 – Curva característica obtida através do ensaio de porosimetria
e do ensaio com papel filtro para o solo Laranja. 301
Figura 6.47 – Curva característica obtida através do ensaio de porosimetria
e do ensaio com papel filtro para o solo Vermelho. 302
Figura 6.48 – Curva característica obtida através do ensaio de porosimetria

e do ensaio com papel filtro para o solo Marrom.
Figura 6.49 – Esquema da resistência elétrica de uma seção de um material
retangular. 303
Figura 6.50 - Variação da resistividade elétrica com o teor de umidade
(McCarter, 1984). 305
Figura 6.51 – Variação da resistividade elétrica em função do teor de
umidade para diferentes massas específicas (Richard et al., 2005).
Figura 6.52 – Variação da resistividade elétrica em função do grau de
saturação para diferentes massas específicas (Richard et al., 2005).
Figura 6.53 – Relação entre a resistividade elétrica e o teor de cimento em
misturas solo-cimento (w/c relação água cimento) (Liu et al., 2007).
Figura 6.54 - Relação entre a resistividade elétrica e o teor grau de
saturação em misturas solo-cimento, com teor de cimento igual a 8%, razão
água-cimento entre 1 e 6% e tempo de cura entre 7 e 35 dias (Liu et al.,
2007).
Figura 6.55 – Índice de resistividade em função do grau de saturação. (a)
Distribuição unimodal de poros. (b) Distribuição trimodal de poros
(Worthington e Pallatt, 1989 apud Richard et al., 2005).
Figura 6.56 – Relação entre pressão capilar e grau de saturação para os
arenitos do grupo 1 (alta permeabilidade) (Li e Williams, 2006).
Figura 6.57 – Relação entre pressão capilar e grau de saturação para os
arenitos do grupo 2 (baixa permeabilidade) (Li e Williams, 2006).
Figura 6.58 – Relação entre pressão capilar e índice de resistividade para os
arenitos do grupo 1 (alta permeabilidade) (Li e Williams, 2006).
Figura 6.59 – Relação entre pressão capilar e índice de resistividade para os
arenitos do grupo 2 (baixa permeabilidade) (Li e Williams, 2006).
Figura 6.60 – Desenho esquemático do ensaio de resistividade elétrica. 315
Figura 6.61 – Gráficos gerados no ensaio de resistividade. (a) Diferença de
potencial versus corrente. (b) Resistividade versus teor de umidade. 316
Figura 6.62 – Ensaio para a determinação da resistência elétrica em
amostras deformadas. "Soil Box".
Figura 6.63 – Variação da resistividade com o índice de vazios para as
amostras deformadas. 318
Figura 6.64 – Variação da resistividade com o teor de umidade e grau de
saturação para amostras deformadas. 321
Figura 6.65 – Solo Branco, amostras brancas de índice de vazios inferior a

0,7. (a) Resistividade versus teor de diffidade. (b) Resistividade versus grad
de saturação. 325
Figura 6.66 – Solo Branco, amostras brancas de índice de vazios superior a
0,7. (a) Resistividade versus teor de umidade. (b) Resistividade versus grau
de saturação. 325
Figura 6.67 - Solo Amarelo. (a) Resistividade versus teor de umidade. (b)
Resistividade versus grau de saturação. 326
Figura 6.68 – Solo Laranja. (a) Resistividade versus teor de umidade. (b)
Resistividade versus grau de saturação. 327
Figura 6.69 – Solo Vermelho. (a) Resistividade versus teor de umidade. (b)
Resistividade versus grau de saturação. 327
Figura 6.70 - Solo Marrom. (a) Resistividade versus teor de umidade. (b)
Resistividade versus grau de saturação. 327
Figura 6.71 – Comparação entre corpos-de-prova deformados e
indeformados do solo Branco. 328
Figura 6.72 – Comparação entre corpos-de-prova deformados e
indeformados do solo Amarelo. 329
Figura 6.73 – Comparação entre corpos-de-prova deformados e
indeformados do solo Laranja. 330
Figura 6.74 – Comparação entre corpos-de-prova deformados e
indeformados do solo Vermelho. 330
Figura 6.75 – Comparação entre corpos-de-prova deformados e
indeformados do solo Marrom. 331
Figura 6.76 – Variação do índice de resistividade com o grau de saturação
para o solo Branco. 333
Figura 6.77 – Variação do índice de resistividade com o grau de saturação
para o solo Amarelo. 333
Figura 6.78 – Variação do índice de resistividade com o grau de saturação
para o solo Laranja. 334
Figura 6.79 – Variação do índice de resistividade com o grau de saturação
para o solo Vermelho. 334
Figura 6.80 – Variação do índice de resistividade com o grau de saturação
para o solo Marrom. 335
Figura 6.81 – Amostras deformadas. (a) Resistividade no grau de saturação
de 85% versus índice ba. (b) Resistividade no grau de saturação de 85%
versus índice ba1. (c) Resistividade no grau de saturação de 85% versus

teor de SiO2. (d) Resistividade no grau de saturação de 85% versus teor de	!
AI2O3.	337
Figura 6.82 – Amostras indeformadas. (a) Resistividade no grau de	:
saturação de 85% versus índice ba. (b) Resistividade no grau de saturação)
de 85% versus índice ba1. (c) Resistividade no grau de saturação de 85%)
versus teor de SiO2. (d) Resistividade no grau de saturação de 85% versus	;
teor de Al2O3.	338
Figura 6.83 - Percolação de água em corpos-de-prova do ensaio de	:
resistividade elétrica.	339
Figura 6.84 – Variação da resistividade elétrica com a percolação de água	l
para o Solo Branco, com o valor do teor de umidade em porcentagem nos	;
rótulos.	341
Figura 6.85 – Variação da resistividade elétrica com a percolação de água	l
para o Solo Amarelo, com o valor do teor de umidade em porcentagem nos	;
rótulos.	342
Figura 6.86 – Variação da resistividade elétrica com a percolação de água	l
para o Solo Laranja, com o valor do teor de umidade em porcentagem nos	;
rótulos.	342
Figura 6.87 – Variação da resistividade elétrica com a percolação de água	l
para o Solo Vermelho, com o valor do teor de umidade em porcentagem nos	;
rótulos.	343
Figura 6.88 – Variação da resistividade elétrica com a percolação de água	l
para o Solo Marrom, com o valor do teor de umidade em porcentagem nos	;
rótulos.	343
Figura 6.89 – Variação do teor de cloretos na água percolada nos corpos-de-	-
prova dos ensaios de resistividade.	347
Figura 6.90 – Variação do teor de sulfatos na água percolada nos corpos-de-	
prova dos ensaios de resistividade.	347
Figura 6.91 – Variação do teor de sódio na água percolada nos corpos-de-	
prova dos ensaios de resistividade.	348
Figura 6.92 - Variação do teor de potássio na água percolada nos corpos-	
de-prova dos ensaios de resistividade.	348
Figura 6.93 – Variação do teor de cálcio na água percolada nos corpos-de-	
prova dos ensaios de resistividade.	349
Figura 6.94 – Variação do teor de magnésio na água percolada nos corpos-	
de-prova dos ensaios de resistividade.	349

Figura 6.95 - Variação da resistividade elétrica com a água percolada e	!
quantidade de cloretos e ânions na água percolada para o Solo Branco.	
Representação do grau de saturação nos rótulos dos pontos.	351
Figura 6.96 - Variação da resistividade elétrica com a água percolada e	!
quantidade de cloretos e ânions na água percolada para o Solo Amarelo.	
Representação do grau de saturação nos rótulos dos pontos.	352
Figura 6.97 - Variação da resistividade elétrica com a água percolada e	!
quantidade de cloretos e ânions na água percolada para o Solo Laranja.	
Representação do grau de saturação nos rótulos dos pontos.	352
Figura 6.98 - Variação da resistividade elétrica com a água percolada e	!
quantidade de cloretos e ânions na água percolada para o Solo Vermelho.	
Representação do grau de saturação nos rótulos dos pontos.	353
Figura 6.99 - Variação da resistividade elétrica com a água percolada e	!
quantidade de cloretos e ânions na água percolada para o Solo Marrom.	
Representação do grau de saturação nos rótulos dos pontos.	353
Figura 6.100 – Resistividade da água com diluição de NaCl e NaSO4.	355
Figura 6.101 - Resistividade da água com diluição de NaCl e NaSO4.	
Detalhe da figura anterior.	355
Figura 6.102 - Resistividade elétrica da água percolada nos solos.	
Percolação de 4.500 ml e 6.500 ml.	356
Figura 6.103 - Variação do índice de resistividade com a sucção matricial	
normalizada para o solo Branco.	358
Figura 6.104 – Variação do índice de resistividade com a sucção total	
normalizada para o solo Branco.	358
Figura 6.105 - Variação do índice de resistividade com a sucção matricial	
normalizada para o solo Amarelo.	359
Figura 6.106 – Variação do índice de resistividade com a sucção total	
normalizada para o solo Amarelo.	359
Figura 6.107 - Variação do índice de resistividade com a sucção matricial	
normalizada para o solo Laranja.	360
Figura 6.108 – Variação do índice de resistividade com a sucção total	
normalizada para o solo Laranja.	360
Figura 6.109 - Variação do índice de resistividade com a sucção matricial	
normalizada para o solo Vermelho.	361
Figura 6.110 - Variação do índice de resistividade com a sucção total	
normalizada nara o solo Vermelho	361

Figura 6.111 – Variação do índice de resistividade com a sucção matricial
normalizada para o solo Marrom. 362
Figura 6.112 – Variação do índice de resistividade com a sucção total
normalizada para o solo Marrom. 362
Figura 6.113 – Esquema de laboratório utilizado para a realização de
ensaios em regime de fluxo estacionário. 364
Figura 6.114 – Variação da permeabilidade com o índice de vazios (Futai,
2002).
Figura 7.1 – Vista geral das prensas de adensamento. 371
Figura 7.2 – Amostras indeformadas. Índice de vazios versus log pressão
efetiva. Ensaio inundado. 373
Figura 7.3 – Amostras indeformadas. Deformação volumétrica normalizada
versus log pressão efetiva. Ensaio inundado. 373
Figura 7.4 – Comparação entre as curvas de compressão obtidas no
presente trabalho e as curvas obtidas de um perfil de solos residuais de
gnaisse de Ouro Preto-MG (Futai, 2002). 375
Figura 7.5 – Comparação entre as curvas de compressão obtidas no
presente trabalho e as curvas obtidas de um perfil de solos residuais de
gnaisse de Espinhaço da Gata-PE (Souza Neto, 1998 apud Futai, 2002). 376
Figura 7.6 – Relação entre o índice de vazios inicial dos corpos-de-prova e o
índice de compressão. 377
Figura 7.7 - Correlação geral entre o índice de compressão e o índice de
vazios (Futai, 2002). 377
Figura 7.8 – Pontos de escoamento do solo Branco. 378
Figura 7.9 – Pontos de escoamento do solo Amarelo. 378
Figura 7.10 – Pontos de escoamento do solo Laranja. 379
Figura 7.11 – Pontos de escoamento do solo Vermelho. 379
Figura 7.12 – Pontos de escoamento do solo Marrom. 380
Figura 7.13 - Amostras desestruturadas. Índice de vazios versus log
pressão efetiva. Ensaio inundado. 383
Figura 7.14 – Amostras desestruturadas. Deformação volumétrica
normalizada versus log pressão efetiva. Ensaio inundado. 383
Figura 7.15 – Solo Branco. Comparação entre curvas do solo desestruturado
e solo indeformado. 384
Figura 7.16 – Solo Amarelo. Comparação entre curvas do solo
desestruturado e solo indeformado. 384

Figura 7.17 – Solo Laranja. Comparação entre curvas do solo
desestruturado e solo indeformado. 385
Figura 7.18 – Solo Vermelho. Comparação entre curvas do solo
desestruturado e solo indeformado. 385
Figura 7.19 – Solo Marrom. Comparação entre curvas do solo
desestruturado e solo indeformado. 386
Figura 7.20 – Esquema da célula edométrica e da aplicação de pressões. 387
Figura 7.21 – Vista geral de dois equipamentos edométricos com sucção
controlada em funcionamento. 387
Figura 7.22 – Utilização de dessecadores para a aplicação de valores de
sucção nos corpos-de-prova. 388
Figura 7.23 – Índice de vazios versus log pressão efetiva. Ensaio não
saturado. Sucção de 50 kPa 390
Figura 7.24 – Deformação volumétrica normalizada versus log pressão
efetiva. Ensaio não saturado. Sucção de 50 kPa. 390
Figura 7.25 – Pontos de escoamento da amostra 2.4499.05 na sucção de 50
kPa. 391
Figura 7.26 – Pontos de escoamento da amostra 2.4021.07 na sucção de 50
kPa. 391
Figura 7.27 – Pontos de escoamento da amostra 2.4022.07 na sucção de 50
kPa. 391
Figura 7.28 – Comparação entre ensaio inundado e ensaios de sucção 50
kPa. 393
Figura 8.1 – Moldagem dos corpos-de-prova compactados. 397
Figura 8.2 - Solo Branco compactado: (a) tensão cisalhante x deslocamento,
(b) variação 399
Figura 8.3 - Solo Amarelo compactado: (a) tensão cisalhante x
deslocamento, (b) variação de altura durante os ensaios. 400
Figura 8.4 - Solo Laranja compactado: (a) tensão cisalhante x deslocamento,
(b) variação de altura durante os ensaios. 401
Figura 8.5 - Solo Vermelho compactado: (a) tensão cisalhante x
deslocamento, (b) variação de altura durante os ensaios. 402
Figura 8.6 - Solo Marrom compactado: (a) tensão cisalhante x
deslocamento, (b) variação de altura durante os ensaios. 403
Figura 8.7 – Envoltória de resistência dos solos compactados para
deslocamento de 12 mm assumindo como válido o critério de Mohr-

404 Coulomb. Figura 8.8 – Envoltória de resistência dos solos compactados para deslocamento de 6 mm assumindo como válido o critério de Mohr-Coulomb. 404 Figura 8.9 – Modos de ruptura dos corpos-de-prova compactados. (a) Plano de ruptura vertical. (b) Sem plano de ruptura definido. (c) Plano de ruptura inclinado. (d) Ruptura no topo do corpo-de-prova. 409 Figura 8.10 - Curvas tensão / deformação dos ensaios de compressão simples para o Solo Branco compactado. 410 Figura 8.11 - Curvas tensão / deformação dos ensaios de compressão simples para o Solo Amarelo compactado. 410 Figura 8.12 – Curvas tensão / deformação dos ensaios de compressão simples para o Solo Laranja compactado. 411 Figura 8.13 - Curvas tensão / deformação dos ensaios de compressão simples para o Solo Vermelho compactado. 411 Figura 8.14 - Curvas tensão / deformação dos ensaios de compressão simples para o Solo Marrom compactado. 412 Figura 8.15 – Módulos de deformação em função do grau de saturação dos corpos-de-prova. (a) Escala de 0 a 90.000 kPa. (b) Escala de 0 a 30.000 kPa. 413 Figura 8.16 – Módulos de deformação em função do grau de saturação dos corpos-de-prova. (a) Solo Branco compactado. (b) Solo Amarelo compactado. (c) Solo Laranja compactado. (d) Solo Vermelho compactado. (e) Solo Marrom compactado. 413 Figura 8.17 – Módulos iniciais para a deformação de 1,5% em função do grau de saturação dos corpos-de-prova. (a) Solo Branco compactado. (b) Solo Amarelo compactado. (c) Solo Laranja compactado. (d) Solo Vermelho 414 compactado. (e) Solo Marrom compactado. Figura 8.18 – Módulos iniciais para deformação de 1,5% em função do grau 415 de saturação dos corpos-de-prova. Figura 8.19 - Variação do índice de vazios em função da umidade gravimétrica para os solos compactados. 416 Figura 8.20 – Resistência à compressão não-confinada versus Grau de

Figura 8.21 – Resistência à compressão não-confinada versus Teor de umidade gravimétrica para o solo Branco compactado com identificação do

saturação para o solo Branco compactado com identificação do índice de

418

vazios dos corpos-de-prova nos rótulos.

índice de vazios dos corpos-de-prova nos rótulos.

Figura 8.22 – Solo Branco compactado. (a) Influência do índice de vazios na resistência à compressão não confinada. (b) Variação do índice de vazios com o teor de umidade.

Figura 8.23 – Resistência à compressão não-confinada versus Grau de saturação para o solo Amarelo compactado com identificação do índice de vazios dos corpos-de-prova nos rótulos.

420

Figura 8.24 – Resistência à compressão não-confinada versus Teor de umidade gravimétrica para o solo Amarelo compactado com identificação do índice de vazios dos corpos-de-prova nos rótulos.

Figura 8.25 – Solo Amarelo compactado. (a) Influência do índice de vazios na resistência à compressão não confinada. (b) Variação do índice de vazios com o teor de umidade.

Figura 8.26 – Resistência à compressão não-confinada versus Grau de saturação para o solo Laranja compactado com identificação do índice de vazios dos corpos-de-prova nos rótulos.

422

Figura 8.27 – Resistência à compressão não-confinada versus Teor de umidade gravimétrica para o solo Laranja compactado com identificação do índice de vazios dos corpos-de-prova nos rótulos.

Figura 8.28 – Solo Laranja compactado. (a) Influência do índice de vazios na resistência à compressão não confinada. (b) Variação do índice de vazios com o teor de umidade.

Figura 8.29 – Resistência à compressão não-confinada versus Grau de saturação para o solo Vermelho compactado com identificação do índice de vazios dos corpos-de-prova nos rótulos.

Figura 8.30 – Resistência à compressão não-confinada versus Teor de umidade gravimétrica para o solo Vermelho compactado com identificação do índice de vazios dos corpos-de-prova nos rótulos.

Figura 8.31 – Solo Vermelho compactado. (a) Influência do índice de vazios na resistência à compressão não confinada. (b) Variação do índice de vazios com o teor de umidade.

Figura 8.32 – Resistência à compressão não-confinada versus Grau de saturação para o solo Marrom compactado com identificação do índice de vazios dos corpos-de-prova nos rótulos.

Figura 8.33 – Resistência à compressão não-confinada versus Teor de umidade gravimétrica para o solo Marrom compactado com identificação do

índice de vazios dos corpos-de-prova nos rótulos.	126
Figura 8.34 – Solo Marrom compactado. (a) Influência do índice de vazios na	
resistência à compressão não confinada. (b) Variação do índice de vazios	
com o teor de umidade.	127
Figura 8.35 - Resistência à compressão não-confinada em função da	
sucção matricial dos solos compactados. (a) Branco. (b) Amarelo. (c)	
Laranja. (d) Vermelho. (e) Marrom.	128
Figura 8.36 - Resultados dos ensaios de compressão simples realizados	
nos corpos-de-prova compactados na umidade ótima (Oliveira, 2004).	129
Figura 8.37 - Resultados dos ensaios de compressão simples realizados	
nos corpos-de-prova compactados em escala de 0 a 500 kPa para a sucção	
matricial.	129
Figura 8.38 – Relação entre resistência não-confinada e teor de argila para	
os solos compactados.	130
Figura 8.39 – Esquema geral do ensaio de compressão diametral.	132
Figura 8.40 - Ensaio de compressão diametral em amostras compactadas	
rompidas em teores de umidade baixos. (a) Início do ensaio. (b) Final do	
ensaio.	435
Figura 8.41 – Ensaio de compressão diametral em amostras compactadas	
rompidas em teores de umidade altos. (a) Início do ensaio. (b) Final do	
ensaio.	435
Figura 8.42 - Exemplos de resultados obtidos para os corpos-de-prova	
ensaiados com (a) baixo teor de umidade e (b) alto teor de umidade.	136
Figura 8.43 – Resistência à tração versus Grau de saturação para o solo	
Branco compactado com identificação do índice de vazios dos corpos-de-	
prova nos rótulos.	137
Figura 8.44 – Resistência à tração versus Umidade gravimétrica para o solo	
Branco compactado com identificação do índice de vazios dos corpos-de-	
prova nos rótulos.	137
Figura 8.45 – Resistência à tração versus Grau de saturação para o solo	
Amarelo compactado com identificação do índice de vazios dos corpos-de-	
prova nos rótulos.	138

prova nos rótulos. 438 Figura 8.47 – Resistência à tração versus Grau de saturação para o solo

Figura 8.46 – Resistência à tração versus Umidade gravimétrica para o solo Amarelo compactado com identificação do índice de vazios dos corpos-de-

Laranja compactado com identificação do índice de vazios dos corpos-de-
prova nos rótulos. 439
Figura 8.48 – Resistência à tração versus Umidade gravimétrica para o solo
Laranja compactado com identificação do índice de vazios dos corpos-de-
prova nos rótulos. 439
Figura 8.49 – Resistência à tração versus Grau de saturação para o solo
Vermelho compactado com identificação do índice de vazios dos corpos-de-
prova nos rótulos. 440
Figura 8.50 – Resistência à tração versus Umidade gravimétrica para o solo
Vermelho compactado com identificação do índice de vazios dos corpos-de-
prova nos rótulos. 440
Figura 8.51 – Resistência à tração versus Grau de saturação para o solo
Marrom compactado com identificação do índice de vazios dos corpos-de-
prova nos rótulos. 441
Figura 8.52 – Resistência à tração versus Umidade gravimétrica para o solo
Marrom compactado com identificação do índice de vazios dos corpos-de-
prova nos rótulos. 441
Figura 8.53 – Resistência à tração versus sucção matricial para um solo
maduro, coluvionar, argilo-arenoso (Soares, 2005).
Figura 8.54 – Resistência à tração dos solos compactados. (a) Branco. (b)
Amarelo. (c) Laranja. (d) Vermelho. (e) Marrom. 444
Figura 8.55 – Relação entre a resistência à tração e o teor de argila das
amostras compactadas. 446
Figura 8.56 - Solo Branco: (a) tensão cisalhante x deslocamento, (b)
variação de altura durante os ensaios (Oliveira, 2006). 449
Figura 8.57 - Solo Amarelo: (a) tensão cisalhante x deslocamento, (b)
variação de altura durante os ensaios (Oliveira, 2006). 450
Figura 8.58 - Solo Laranja: (a) tensão cisalhante x deslocamento, (b)
variação de altura durante os ensaios (Oliveira, 2006). 451
Figura 8.59 - Solo Vermelho: (a) tensão cisalhante x deslocamento, (b)
variação de altura durante os ensaios (Oliveira, 2006). 452
Figura 8.60 - Solo Marrom: (a) tensão cisalhante x deslocamento, (b)
variação de altura durante os ensaios (Oliveira, 2006). 453
Figura 8.61 – Envoltória de resistência para deslocamento de 12 mm
assumindo como válido o critério de Mohr-Coulomb (Oliveira, 2006). 455

Figura 8.62 - Envoltória de resistência para deslocamento de 6 mm

assumindo como válido o critério de Mohr-Coulomb (Oliveira, 2006). 455
Figura 8.63 – Envoltória de resistência curva ajustada por uma função
potência (Oliveira, 2006). 457
Figura 8.64 – Variação dos parâmetros de resistência com a profundidade.
(a) Coesão dos solos indeformados e compactados. (b) Ângulo de atrito dos
solos indeformados e compactados. 458
Figura 8.65 - Exemplos de ruptura de corpos-de-prova submetidos à
compressão simples. 464
Figura 8.66 - Curvas tensão / deformação dos ensaios de compressão
simples para o Solo Branco 465
Figura 8.67 - Curvas tensão / deformação dos ensaios de compressão
simples para o Solo Amarelo. 465
Figura 8.68 - Curvas tensão / deformação dos ensaios de compressão
simples para o Solo Laranja. 466
Figura 8.69 - Curvas tensão / deformação dos ensaios de compressão
simples para o Solo Marrom, com teores de umidade elevados. 466
Figura 8.70 - Curvas tensão / deformação dos ensaios de compressão
simples para o Solo Vermelho. Teores de umidade inferiores a 5%. 467
Figura 8.71 - Curvas tensão / deformação dos ensaios de compressão
simples para o Solo Marrom. Teores de umidade inferiores a 5%. 467
Figura 8.72 - Curvas tensão / deformação dos ensaios de compressão
simples para o Solo Marrom, com baixos teores de umidade. 468
Figura 8.73 – Módulos de deformação em função do grau de saturação dos
corpos-de-prova indeformados. 468
Figura 8.74 – Resistência à compressão simples versus grau de saturação
para o solo Branco com identificação do índice de vazios dos corpos-de-
prova nos rótulos. 470
Figura 8.75 – Resistência à compressão simples versus teor de umidade
gravimétrica para o solo Branco com identificação do índice de vazios dos
corpos-de-prova nos rótulos. 470
Figura 8.76 – Solo Branco Indeformado. (a) Índice de vazios versus teor de
umidade gravimétrica. (b) Resistência versus peso específico seco. 471
Figura 8.77 – Resistência à compressão simples versus grau de saturação
para o solo Amarelo com identificação do índice de vazios dos corpos-de-
prova nos rótulos. 472
Figura 8.78 - Resistência à compressão simples versus teor de umidade

gravimétrica para o solo Amarelo com identificação do índice de vazios dos
corpos-de-prova nos rótulos. 472
Figura 8.79 – Solo Amarelo Indeformado. (a) Índice de vazios versus teor de
umidade gravimétrica. (b) Resistência versus peso específico seco. 473
Figura 8.80 – Resistência à compressão simples versus grau de saturação
para o solo Amarelo com distinção dos corpos-de-prova de índice vazios
inferior a 0,8. 473
Figura 8.81 – Resistência à compressão simples versus grau de saturação
para o solo Laranja com identificação do índice de vazios dos corpos-de-
prova nos rótulos. 474
Figura 8.82 – Resistência à compressão simples versus umidade
gravimétrica para o solo Laranja com identificação do índice de vazios dos
corpos-de-prova nos rótulos. 474
Figura 8.83 – Solo Laranja Indeformado. (a) Índice de vazios versus teor de
umidade gravimétrica. (b) Resistência versus peso específico seco. 475
Figura 8.84 – Resistência à compressão simples versus grau de saturação
para o solo Vermelho. 476
Figura 8.85 – Resistência à compressão simples versus umidade
gravimétrica para o solo Vermelho. 476
Figura 8.86 - Solo Vermelho Indeformado. (a) Índice de vazios versus teor
de umidade gravimétrica. (b) Resistência versus peso específico seco. 477
Figura 8.87 – Resistência à compressão simples versus grau de saturação
para o solo Marrom. 478
Figura 8.88 – Resistência à compressão simples versus umidade
gravimétrica para o solo Marrom. 478
Figura 8.89 – Solo Marrom Indeformado. (a) Índice de vazios versus teor de
umidade gravimétrica. (b) Resistência versus peso específico seco. 479
Figura 8.90 – Resistência à compressão não-confinada em função da
sucção matricial dos solos indeformados. (a) (b) Branco. (c) (d) Amarelo. (e)
(f) Laranja. (g) (h) Vermelho. (i) (j) Marrom. 481
Figura 8.91 – Resistência à compressão não-confinada em função da
sucção matricial dos solos indeformados Branco e Amarelo. 482
Figura 8.92 - Relação entre resistência à compressão simples e teor de
argila das amostras indeformadas. 483
Figura 8.93 - Ruptura de corpo de prova por desenvolvimento de fissura
vertical. 488

Figura 8.94 – Ruptura de corpo de prova por fratura pré-existente. 489
Figura 8.95 – Ruptura de corpo de prova por fratura pré-existente. 489
Figura 8.96 – Resistência à tração versus grau de saturação para o solo
Branco com identificação do índice de vazios dos corpos-de-prova nos
rótulos. 490
Figura 8.97 – Resistência à tração versus umidade gravimétrica para o solo
Branco com identificação do índice de vazios dos corpos-de-prova nos
rótulos. 490
Figura 8.98 – Resistência à tração versus grau de saturação para o solo
Amarelo com identificação do índice de vazios dos corpos-de-prova nos
rótulos. 491
Figura 8.99 – Resistência à tração versus umidade gravimétrica para o solo
Amarelo com identificação do índice de vazios dos corpos-de-prova nos
rótulos. 491
Figura 8.100 – Resistência à tração versus grau de saturação para o solo
Laranja com identificação do índice de vazios dos corpos-de-prova nos
rótulos. 492
Figura 8.101 – Resistência à tração versus umidade gravimétrica para o solo
Laranja com identificação do índice de vazios dos corpos-de-prova nos
rótulos. 492
Figura 8.102 – Resistência à tração versus grau de saturação para o solo
Vermelho com identificação do índice de vazios dos corpos-de-prova nos
rótulos. 493
Figura 8.103 – Resistência à tração versus umidade gravimétrica para o solo
Vermelho com identificação do índice de vazios dos corpos-de-prova nos
rótulos. 493
Figura 8.104 – Resistência à tração versus grau de saturação para o solo
Marrom com identificação do índice de vazios dos corpos-de-prova nos
rótulos. 494
Figura 8.105 – Resistência à tração versus umidade gravimétrica para o solo
Marrom com identificação do índice de vazios dos corpos-de-prova nos
rótulos. 494
Figura 8.106 – Comportamento de resistência à tração típico de solos não
coesivos (Goulding, 2006). 495
Figura 8.107 – Picos de resistência à tração para o solo Branco
indeformado. 496

Figura 8.108 – Picos de resistência à tração para o solo Amarelo
indeformado. 497
Figura 8.109 – Resistência à tração dos solos indeformados em função da
sucção matricial. (a) Branco. (b) Amarelo. (c) Laranja. (d) Vermelho. (e)
Marrom. 498
Figura 8.110 – Relação entre o teor de argila e a resistência à tração dos
solos indeformados. 500
Figura 8.111 – Influência do tamanho de poros na resistência à tração. 50
Figura 8.112 - Comparação entre resultados de ensaios de compressão
uniaxial do solo Branco compactado e indeformado. (a) Grau de saturação
versus resistência. (b) Teor de umidade gravimétrica versus índice de
vazios. (c) Peso específico seco versus resistência. 503
Figura 8.113 - Comparação entre resultados de ensaios de compressão
uniaxial do solo Amarelo compactado e indeformado. (a) Grau de saturação
versus resistência. (b) Teor de umidade gravimétrica versus índice de
vazios. (c) Peso específico seco versus resistência. 504
Figura 8.114 - Comparação entre resultados de ensaios de compressão
uniaxial do solo Laranja compactado e indeformado. (a) Grau de saturação
versus resistência. (b) Teor de umidade gravimétrica versus índice de
vazios. (c) Peso específico seco versus resistência. 505
Figura 8.115 - Comparação entre resultados de ensaios de compressão
uniaxial do solo Vermelho compactado e indeformado. (a) Grau de saturação
versus resistência. (b) Teor de umidade gravimétrica versus índice de
vazios. (c) Peso específico seco versus resistência. 506
Figura 8.116 - Comparação entre resultados de ensaios de compressão
uniaxial do solo Marrom compactado e indeformado. (a) Grau de saturação
versus resistência. (b) Teor de umidade gravimétrica versus índice de
vazios. (c) Peso específico seco versus resistência. 507
Figura 8.117 – Deformação na ruptura versus teor de umidade para os solos
compactados. 508
Figura 8.118 – Deformação na ruptura versus teor de umidade para os solos
indeformados. 508
Figura 8.119 – Aplicação do modelo proposto por Vanapalli et al. (1996) aos
ensaios realizados nos solos compactados. (a) Solo Branco. (b) Solo

Amarelo. (c) Solo Laranja. (d) Solo Vermelho. (e) Solo Marrom.

Figura 8.120 – Aplicação do modelo proposto por Vanapalli et al. (1996) aos

511

ensaios realizados nos solos compactados. Melhor ajuste obtido com a
variação de k, C e □. (a) Solo Branco. (b) Solo Amarelo. (c) Solo Laranja. (d)
Solo Vermelho. (e) Solo Marrom. 512
Figura 8.121 – Aplicação do modelo proposto por Vanapalli et al. (1996) aos
ensaios realizados nos solos indeformados. (a) Solo Branco. (b) Solo
Amarelo. (c) Solo Laranja. (d) Solo Vermelho. (e) Solo Marrom. 514
Figura 8.122 - Compressão diametral do solo Branco compactado e
indeformado. (a) Grau de saturação versus resistência. (b) Teor de umidade
gravimétrica versus índice de vazios. (c) Peso específico seco versus
resistência. 516
Figura 8.123 – Resistência à tração do solo Branco no estado compactado e
indeformado com valores de e < 0,78. 516
Figura 8.124 - Compressão diametral do solo Amarelo compactado e
indeformado. (a) Grau de saturação versus resistência. (b) Teor de umidade
gravimétrica versus índice de vazios. (c) Peso específico seco versus
resistência. 517
Figura 8.125 – Compressão diametral do solo Laranja compactado e
indeformado. (a) Grau de saturação versus resistência. (b) Teor de umidade
gravimétrica versus índice de vazios. (c) Peso específico seco versus
resistência. 518
Figura 8.126 - Compressão diametral do solo Vermelho compactado e
indeformado. (a) Grau de saturação versus resistência. (b) Teor de umidade
gravimétrica versus índice de vazios. (c) Peso específico seco versus
resistência. 519
Figura 8.127 – Compressão diametral do solo Marrom compactado e
indeformado. (a) Grau de saturação versus resistência. (b) Teor de umidade
gravimétrica versus índice de vazios. (c) Peso específico seco versus
resistência. 520
Figura 8.128 – Valores medidos e previstos para a resistência à tração do
solo Branco indeformado. 524
Figura 8.129 – Valores medidos e previstos para a resistência à tração do
solo Amarelo indeformado. 524
Figura 8.130 – Valores medidos e previstos para a resistência à tração do

Figura 8.131 – Valores medidos e previstos para a resistência à tração do solo Vermelho indeformado. 525

525

solo Laranja indeformado.

Figura 8.132 – Valores medidos e previstos para a resistência à tração do
solo Marrom indeformado. 526
Figura 8.133 – Influência do ângulo de contato na previsão da resistência à
tração do solo Marrom para o método de Rumpf. 527
Figura 8.134 – Valores medidos e previstos para a resistência à tração do
solo Branco compactado. 530
Figura 8.135 – Valores medidos e previstos para a resistência à tração do
solo Amarelo compactado. 531
Figura 8.136 – Valores medidos e previstos para a resistência à tração do
solo Laranja compactado. 531
Figura 8.137 – Valores medidos e previstos para a resistência à tração do
solo Vermelho compactado. 532
Figura 8.138 – Valores medidos e previstos para a resistência à tração do
solo Marrom compactado. 532
Figura 8.139 – Variação da resistência com o teor de argila para as
amostras compactadas no estado saturado. 534
Figura 8.140 - Variação do ângulo de atrito com o teor de areia para as
amostras indeformadas no estado saturado. 535
Figura 8.141 – Variação da resistência com o teor de argila para as
amostras indeformadas no estado saturado. 536
Figura 8.142 – Variação do ângulo de atrito com o teor de areia para as
amostras indeformadas no estado saturado. 537
Figura 8.143 – Variação do ângulo de atrito com as porcentagens de SiO2,
Al2O3, Fe2O3 para as amostras indeformadas no estado saturado. 538
Figura 8.144 – Relação entre os parâmetros de resistência e o índice de
intemperismo ba1. (a) Coesão e ângulo de atrito. (b) Parâmetros a e b
(Oliveira, 2006). 539
Figura 8.145 – Influência do intemperismo na resistência não-confinada dos
solos compactados. (a) Escala de 0 a 400 kPa. (b) Escala de 0 a 100 kPa. 540
Figura 8.146 – Influência do intemperismo na resistência à tração dos solos
compactados. 540
Figura 8.147 – Relação entre resistência à tração e resistência não-drenada
e teor de argila para os solos compactados. 541
Figura 8.148 – Relação entre resistência à tração e resistência não-drenada
o índice de intemperismo para os solos compactados. (a) Índice de

541

intemperismo ba1. (b) Índice de intemperismo ba.

Figura 8.149 – Influencia do Intemperismo na resistencia nao-confinada para
os solos indeformados. 542
Figura 8.150 – Influência do intemperismo na resistência à tração dos solos
indeformados. (a) Escala de 0 a 80 kPa. (b) Escala de 0 a 40 kPa. 542
Figura 8.151 – Relação entre a resistência à tração e a resistência à
compressão não-drenada para os solos indeformados. (a) Resistência
versus profundidade. (b) Resistência não-drenada versus resistência à
tração. 543
Figura 8.152 – Relação entre resistência e ensaios químicos. (a) Resistência
versus superfície específica. (b) Resistência versus Al2O3. 543
Figura 8.153 – Relação entre resistência e estrutura. (a) Resistência versus
índice de vazios. (b) Resistência versus macro-poros. 544
Figura 8.154 – Máxima resistência à tração e resistência não-drenada para
solos indeformados. (a) Relação entre sucção matricial residual e
resistência. (b) Relação entre teor de umidade para grau de saturação 100%
e resistência. (c) Relação entre limite de liquidez e resistência. (d) Relação
entre limite de plasticidade e resistência. 545
Figura 9.1 – Prensa triaxial tipo Bishop Wesley. 551
Figura 9.2 – Esquema do equipamento triaxial. 552
Figura 9.3 – Instrumentos de medidas de deformação interna. (a) Eletronivel. (b)
Medidor de deformação radial. 553
Figura 9.4 – Medidor de variação de volume (de Campos, 1981; de Campos,
1985). 553
Figura 9.5 – Variação volumétrica do corpo-de-prova durante adensamento de
200 kPa. 555
Figura 9.6 - Variação volumétrica do corpo-de-prova durante adensamento de
400 kPa. 555
Figura 9.7 – Comparação de resultados entre medidor de deformação externo
(LVDT) e interno (eletronível). 556
Figura 9.8 – Curvas tensão cisalhante x deformação axial dos ensaios triaxiais.
Figura 9.9 - Curvas tensão cisalhante x deformação axial normalizada dos
ensaios triaxiais. 558
Figura 9.10 – Curvas variação de poro-pressão x deformação axial dos ensaios
triaxiais. 559
Figura 9.11 – Curvas variação de poro-pressão x deformação axial normalizada

1995, modificado).

dos ensaios triaxiais. 559
Figura 9.12 – Curvas p' x q dos ensaios triaxiais. 560
Figura 9.13 - Comparação entre as curvas de cisalhamento de um solo
saprolítico de Ouro Preto (Fonseca, 2000) e o solo Marrom. 561
Figura 9.14 – Variação das características físicas do perfil de solo residual de
Ouro Preto (Futai, 2002). 562
Figura 9.15 – Ensaios CIU realizados em solos residuais de gnaisse de Ouro
Preto, coletados em diferentes profundidades. (a) Solo coletado a 1 metro de
profundidade. (b) Solo coletado a 3 metros de profundidade. (c) Solo coletado a
5 metros de profundidade. (Futai, 2002). 563
Figura 9.16 – Comparação entre as curvas de cisalhamento de um solo
saprolítico de Ouro Preto, coletado a 3 metros de profundidade (Futai, 2002) e o
solo Marrom. 564
Figura 9.17 - Curvas tensão cisalhante versus deformação axial (medidor
interno) e deformação axial (medidor interno) versus deformação radial (medidor
radial) para a tensão efetiva de 20 kPa, escala 1. 566
Figura 9.18 - Curvas tensão cisalhante versus deformação axial (medidor
interno) e deformação axial (medidor interno) versus deformação radial (medidor
radial) para a tensão efetiva de 20 kPa, escala 2. 566
Figura 9.19 - Curvas tensão cisalhante versus deformação axial (medidor
interno) e deformação axial (medidor interno) versus deformação radial (medidor
radial) para a tensão efetiva de 200 kPa, escala 1. 567
Figura 9.20 - Curvas tensão cisalhante versus deformação axial (medidor
interno) e deformação axial (medidor interno) versus deformação radial (medidor
radial) para a tensão efetiva de 200 kPa, escala 2. 567
Figura 9.21 - Curvas tensão cisalhante versus deformação axial (medidor
interno) e deformação axial (medidor interno) versus deformação radial (medidor
radial) para a tensão efetiva de 400 kPa, escala 1. 568
Figura 9.22 - Curvas tensão cisalhante versus deformação axial (medidor
interno) e deformação axial (medidor interno) versus deformação radial (medidor
radial) para a tensão efetiva de 400 kPa, escala 2. 568
Figura 9.23 - Variação do módulo secante com a deformação axial para o
ensaio saturado com tensão efetiva de 20, 200 e 400 kPa. 570
Figura 9.24 - Critérios de Ruptura para Solos. 572
Figura 9.25 - Definição da Tensão Cisalhante na Ruptura (De Campos e Carrillo,

573

Figura 9.26 – Curva de razão entre as tensões principais efetivas x deformação
axial. 574
Figura 9.27 – Envoltórias de ruptura para a deformação de 2%. 575
Figura 9.28 – Envoltórias de ruptura para a deformação de 4%. 575
Figura 9.29 – Envoltórias de ruptura para a deformação de 6%. 575
Figura 9.30 – Envoltória de ruptura de acordo com a trajetória de tensões. 576
Figura 9.31 – Determinação do ponto de ruptura de acordo com proposição de
De Campos e Carrillo, 1995. 576
Figura 9.32 – Envoltória de ruptura de acordo com proposição de De Campos e
Carrillo, 1995. 577
Figura 9.33 – Envoltórias de ruptura para o solo Marrom saturado. 578
Figura 9.34 - Esquema de disposição dos equipamentos para realização dos
ensaios triaxiais não saturados. 579
Figura 9.35 - Curvas de variação de volume de água durante estabilização do
corpo-de-prova na câmara triaxial. 581
Figura 9.36 – Curva característica do solo Marrom. 583
Figura 9.37 – Curva característica do solo Vermelho. 583
Figura 9.38 - Corpos-de-prova dos ensaios triaxiais com sucção controlada de
50 kPa. Ensaios com tensão controlada. (a) Corpo-de-prova A - Tensão norma
líquida de 35 kPa. (b) Corpo-de-prova B - Tensão normal líquida de 70 kPa. (c
Corpo-de-prova C - Tensão normal líquida de 70 kPa. (d) Corpo-de-prova D
Tensão normal líquida de 150 kPa. 584
Figura 9.39 – Corpos-de-prova dos ensaios triaxiais com sucção controlada de
150 kPa. Ensaios com tensão controlada. (a) Corpo-de-prova E - Tensão norma
líquida de 35 kPa. (b) Corpo-de-prova F - Tensão normal líquida de 70 kPa. (c)
Corpo-de-prova G - Tensão normal líquida de 150 kPa. 585
Figura 9.40 - Ensaio triaxial de sucção controlada igual a 50 kPa, tensão
controlada. Curvas tensão-deformação. 587
Figura 9.41 - Ensaio triaxial de sucção controlada igual a 50 kPa, tensão
controlada. Curvas deformação radial-deformação axial. 587
Figura 9.42 - Ensaio triaxial de sucção controlada igual a 150 kPa, tensão
controlada. Curvas tensão-deformação. 588
Figura 9.43 - Ensaio triaxial de sucção controlada igual a 150 kPa, tensão
controlada. Curvas deformação radial-deformação axial. 588
Figura 9.44 - Corpos-de-prova dos ensaios triaxiais com sucção controlada de
150 kPa. Ensaios com deformação controlada. (a) Corpo-de-prova H - Tensão

normal líquida de 35 kPa. (b) Corpo-de-prova I - Tensão normal líquida de 70 kPa. (c) Corpo-de-prova J - Tensão normal líquida de 150 kPa. 590

Figura 9.45 – Ensaio triaxial de sucção controlada, igual a 150 kPa, deformação controlada. Curvas tensão-deformação.

Figura 9.46 – Ensaio triaxial de sucção controlada, igual a 150 kPa, deformação controlada. Curvas deformação radial-deformação axial.

Figura 9.47 – Curvas tensão cisalhante versus deformação axial (medidor interno) e deformação axial (medidor interno) versus deformação radial (medidor radial) para a sucção de 50 kPa, tensão controlada, e tensão normal líquida de 35 kPa, escala 1.

Figura 9.48 – Curvas tensão cisalhante versus deformação axial (medidor interno) e deformação axial (medidor interno) versus deformação radial (medidor radial) para a sucção de 50 kPa, tensão controlada, e tensão normal líquida de 35 kPa, escala 2.

Figura 9.49 – Curvas tensão cisalhante versus deformação axial (medidor interno) e deformação axial (medidor interno) versus deformação radial (medidor radial) para a sucção de 50 kPa, tensão controlada, e tensão normal líquida de 70 kPa, escala 1.

Figura 9.50 – Curvas tensão cisalhante versus deformação axial (medidor interno) e deformação axial (medidor interno) versus deformação radial (medidor radial) para a sucção de 50 kPa, tensão controlada, e tensão normal líquida de 70 kPa, escala 2.

Figura 9.51 – Curvas tensão cisalhante versus deformação axial (medidor interno) e deformação axial (medidor interno) versus deformação radial (medidor radial) para a sucção de 50 kPa, tensão controlada, e tensão normal líquida de 150 kPa, escala 1.

Figura 9.52 – Curvas tensão cisalhante versus deformação axial (medidor interno) e deformação axial (medidor interno) versus deformação radial (medidor radial) para a sucção de 50 kPa, tensão controlada, e tensão normal líquida de 150 kPa, escala 2.

Figura 9.53 – Curvas tensão cisalhante versus deformação axial (medidor interno) e deformação axial (medidor interno) versus deformação radial (medidor radial) para a sucção de 150 kPa, tensão controlada, e tensão normal líquida de 35 kPa, escala 1.

Figura 9.54 – Curvas tensão cisalhante versus deformação axial (medidor interno) e deformação axial (medidor interno) versus deformação radial (medidor

radial) para a sucção de 150 kPa, tensão controlada, e tensão normal líquida de 35 kPa, escala 2. 597

Figura 9.55 – Curvas tensão cisalhante versus deformação axial (medidor interno) e deformação axial (medidor interno) versus deformação radial (medidor radial) para a sucção de 150 kPa, tensão controlada, e tensão normal líquida de 70 kPa, escala 1.

Figura 9.56 – Curvas tensão cisalhante versus deformação axial (medidor interno) e deformação axial (medidor interno) versus deformação radial (medidor radial) para a sucção de 150 kPa, tensão controlada, e tensão normal líquida de 70 kPa, escala 2.

Figura 9.57 – Curvas tensão cisalhante versus deformação axial (medidor interno) e deformação axial (medidor interno) versus deformação radial (medidor radial) para a sucção de 150 kPa, tensão controlada, e tensão normal líquida de 150 kPa, escala 1.

Figura 9.58 – Curvas tensão cisalhante versus deformação axial (medidor interno) e deformação axial (medidor interno) versus deformação radial (medidor radial) para a sucção de 150 kPa, tensão controlada, e tensão normal líquida de 150 kPa, escala 2.

Figura 9.59 – Curvas tensão cisalhante versus deformação axial (medidor interno) e deformação axial (medidor interno) versus deformação radial (medidor radial) para a sucção de 150 kPa, deformação controlada, e tensão normal líquida de 35 kPa.

Figura 9.60 – Curvas tensão cisalhante versus deformação axial (medidor interno) e deformação axial (medidor interno) versus deformação radial (medidor radial) para a sucção de 150 kPa, deformação controlada, e tensão normal líquida de 70 kPa.

Figura 9.61 – Curvas tensão cisalhante versus deformação axial (medidor interno) e deformação axial (medidor interno) versus deformação radial (medidor radial) para a sucção de 150 kPa, deformação controlada, e tensão normal líquida de 150 kPa.

Figura 9.62 – Variação do módulo de deformação secante com a deformação axial para o ensaio não saturado executado, sucção de 50 kPa, com tensão controlada.

Figura 9.63 – Variação do módulo de deformação secante com a deformação axial para o ensaio não saturado executado, sucção de 150 kPa, com tensão controlada.

Figura 9.64 – Variação do módulo elástico com a deformação axial para o ensaio não saturado executado, sucção de 150 kPa, com deformação controlada. 603 Figura 9.65 – Resistência em função da tensão normal líquida e sucção obtida dos ensaios de tensão controlada. 605

Figura 9.66 – Ruptura definida pelo critério de máxima deformação radial em comparação com as envoltórias de ruptura determinadas pelos métodos convencionais.

Figura 9.67 – Tensão desviadora na ruptura versus tensão normal para diferentes condições de saturação do solo Marrom. 607

Lista de tabelas

Tabela 2.1 – Equações matemáticas propostas para a curva característica	а
dos solos.	70
Tabela 2.2 - Proposições para a modelagem da curva de condutividade	е
hidráulica (Gerscovich e Guedes, 2004).	78
Tabela 2.3 – Expressões formuladas com base na extensão do princípio das	s
tensões efetivas para solos não saturados.	81
Tabela 3.1 - Sumário da compressibilidade dos solos tropicais (Futai, 2002).	133
Tabela 3.2 – Índice de vazios inicial, coesão e ângulo de atrito para um solo	0
residual jovem de gnaisse (Maccarini, 1980).	141
Tabela 3.3 - Coesão e ângulo de atrito de um solo residual jovem de	е
gnaisse (Costa Filho e de Campos, 1991).	141
Tabela 3.4 - Coesão e ângulo de atrito de um solo residual jovem de	е
gnaisse (Costa Filho e de Campos, 1991).	141
Tabela 3.5 – Coesão e ângulo de atrito de um solo residual jovem e um solo	0
residual maduro de gnaisse (Aleixo, 1998).	142
Tabela 3.6 – Coesão e ângulo de atrito de um solo residual jovem e um solo	0
residual maduro de gnaisse (Reis, 2004).	143
Tabela 4.1 - Coluna estratigráfica da região de Curitiba (Salamuni, 1998	₿,
modificado).	151
Tabela 4.2 – Dados das coletas de amostras no talude.	155
Tabela 4.3 – Amostras indeformadas coletadas em dezembro de 2004.	160
Tabela 4.4 – Amostras indeformadas coletadas em julho de 2005.	162
Tabela 4.5 – Amostras indeformadas coletadas em agosto de 2005.	168
Tabela 4.6 – Amostras deformadas coletadas em dezembro de 2004.	168
Tabela 4.7 – Amostras indeformadas coletadas em julho de 2007.	168
Tabela 5.1 – Ensaios realizados para o Solo Branco.	181
Tabela 5.2 – Ensaios realizados para o Solo Amarelo.	183
Tabela 5.3 – Ensaios realizados para o Solo Laranja.	185
Tabela 5.4 – Ensaios realizados para o Solo Vermelho.	187
Tabela 5.5 – Ensaios realizados para o Solo Marrom.	188
Tabela 5.6 – Porosidade por injeção de mercúrio.	210
Tabela 5.7 – Classificação dos espaços porosos.	211
Tabela 5.8 – Distribuição de poros em porcentagem.	211

rabeia 5.9 – Resultados dos ensaios de caracterização das amostras	
compactadas.	213
Tabela 5.10 – Valores de pH e Acidez Total.	221
Tabela 5.11 – Matéria Orgânica.	221
Tabela 5.12 - Análises químicas totais por fluorescência de raios-X das	
diversas camadas de solo do perfil estudado (Oliveira, 2006).	224
Tabela 5.13 – Resultado do ensaio de cromatografia.	226
Tabela 5.14 - Minerais identificados por difratometria de raios-X (Oliveira,	
2006).	232
Tabela 5.15 – Variação do peso específico seco para os solos estudados.	239
Tabela 5.16 – Variação do índice de vazios para os solos estudados.	242
Tabela 5.17 – Limite de contração de amostras indeformadas.	243
Tabela 5.18 - Valores de Peso Específico Seco, Índice de Vazios e	
Porosidade representativos para cada tipo de solo.	245
Tabela 5.19 – Comparação entre porosidades.	245
Tabela 5.20 - Variações típicas no índice de vazios in situ em solos	
residuais brasileiros (Sandroni, 1985).	246
Tabela 6.1 – Técnicas utilizadas para determinação da curva característica	
em solos.	250
Tabela 6.2 – Instrumentos utilizados para determinação da sucção em solos.	250
Tabela 6.3 - Potenciais de água de uma solução de cloreto de sódio em	
função da temperatura e molalidade (Juca, 1999).	256
Tabela 6.4 - Potenciais de água de uma solução de ácido sulfúrico em	
função da temperatura e molalidade (Juca, 1999).	257
Tabela 6.5 – Teor de umidade gravimétrica médio para o grau de saturação	
igual a 100% para os solos estudados.	265
Tabela 6.6 – Parâmetros de ajuste para a curva de sucção matricial do solo	
Branco.	266
Tabela 6.7 – Parâmetros de ajuste para a curva de sucção matricial do solo	
Amarelo.	267
Tabela 6.8 – Parâmetros de ajuste para a curva de sucção matricial do solo	
Laranja.	268
Tabela 6.9 – Parâmetros de ajuste para a curva de sucção matricial do solo	
Laranja, desconsiderando valor do teor de umidade saturado definido	
previamente.	269
Tabela 6 10 – Parâmetros de ajuste para a curva de sucção matricial do solo	

Vermelho.	270
Tabela 6.11 – Parâmetros de ajuste para a curva de sucção matricial do solo	
Marrom.	272
Tabela 6.12 - Valores característicos das curvas de retenção dos solos	
indeformados.	273
Tabela 6.13 – Índices físicos obtidos dos corpos-de-prova do solo Branco	
utilizados na determinação da curva característica.	279
Tabela 6.14 – Índices físicos obtidos dos corpos-de-prova do solo Amarelo	
utilizados na determinação da curva característica.	280
Tabela 6.15 – Índices físicos obtidos dos corpos-de-prova do solo Laranja	
utilizados na determinação da curva característica.	281
Tabela 6.16 – Índices físicos obtidos dos corpos-de-prova do solo Vermelho	
utilizados na determinação da curva característica.	282
Tabela 6.17 – Índices físicos obtidos dos corpos-de-prova do solo Marrom	
utilizados na determinação da curva característica.	283
Tabela 6.18 – Teor de umidade gravimétrica médio para o grau de saturação	
igual a 100% para os solos estudados compactados.	284
Tabela 6.19 – Índices físicos obtidos dos corpos-de-prova compactados do	
solo Branco utilizados na determinação da curva característica.	285
Tabela 6.20 – Índices físicos obtidos dos corpos-de-prova compactados do	
solo Amarelo utilizados na determinação da curva característica.	285
Tabela 6.21 – Índices físicos obtidos dos corpos-de-prova compactados do	
solo Laranja utilizados na determinação da curva característica.	286
Tabela 6.22 – Índices físicos obtidos dos corpos-de-prova compactados do	
solo Vermelho utilizados na determinação da curva característica.	286
Tabela 6.23 – Índices físicos obtidos dos corpos-de-prova compactados do	
solo Marrom utilizados na determinação da curva característica.	287
Tabela 6.24 – Parâmetros de ajuste para a curva de sucção matricial do solo	
Branco compactado.	288
Tabela 6.25 – Parâmetros de ajuste para a curva de sucção matricial do solo	
Amarelo compactado.	289
Tabela 6.26 – Parâmetros de ajuste para a curva de sucção matricial do solo	
Laranja compactado.	290
Tabela 6.27 – Parâmetros de ajuste para a curva de sucção matricial do solo	
Vermelho compactado.	291
Tabela 6.28 – Parâmetros de ajuste para a curva de sucção matricial do solo	

Marrom compactado.	292
Tabela 6.29 - Valores característicos das curvas de retenção dos solos	3
compactados.	293
Tabela 6.30 – Dados das curvas de retenção.	294
Tabela 6.31 – Parâmetros da curva característica solo-ar.	299
Tabela 6.32 - Dados dos ensaios de resistividade com teor de umidade	;
constante.	317
Tabela 6.33 - Dados dos ensaios de resistividade com índice de vazios	3
constante.	319
Tabela 6.34 – Funções do tipo potência propostas para o ajuste dos dados	3
de resistividade (y) em função do grau de saturação (x) e do índice de vazios	3
das amostras deformadas.	322
Tabela 6.35 - Características dos solos indeformados utilizados para os	6
ensaios de resistividade elétrica.	324
Tabela 6.36 - Dados dos corpos-de-prova dos ensaios de resistividade	;
elétrica com percolação de água.	340
Tabela 6.37 – Ensaios realizados na água percolada nos solos.	344
Tabela 6.38 - Análise química da água percolada nos corpos-de-prova do)
ensaio de resistividade.	346
Tabela 6.39 – Resistividade da água com diluição de NaCl e NaSO4.	354
Tabela 6.40 – Dados do ensaio de permeabilidade à carga variável.	365
Tabela 7.1 – Parâmetros obtidos dos ensaios de adensamento inundado em	1
amostras indeformadas.	372
Tabela 7.2 – Parâmetros de compressão edométrica (Futai, 2002).	374
Tabela 7.3 – Início da reta virgem e ponto de escoamento dos solos	3
indeformados.	381
Tabela 7.4 – Parâmetros obtidos dos ensaios de adensamento inundado em	1
amostras desestruturadas.	382
Tabela 7.5 – Parâmetros obtidos dos ensaios de adensamento não saturado)
com sucção de 50 kPa.	389
Tabela 7.6 - Início da reta virgem e pontos de escoamento dos solos	6
indeformados com sucção de 50 kPa.	392
Tabela 8.1 – Dados dos corpos-de-prova compactados utilizados nos	3
ensaios de cisalhamento direto.	398
Tabela 8.2 - Resumo dos ensaios de cisalhamento direto para os solos	3
compactados.	405

Tabela 8.3 – Indices físicos dos corpos-de-prova Branco compactados
submetidos à compressão uniaxial. 406
Tabela 8.4 – Índices físicos dos corpos-de-prova Amarelo compactados
submetidos à compressão uniaxial. 407
Tabela 8.5 – Índices físicos dos corpos-de-prova Laranja compactados
submetidos à compressão uniaxial. 407
Tabela 8.6 – Índices físicos dos corpos-de-prova Vermelho compactados
submetidos à compressão uniaxial. 408
Tabela 8.7 – Índices físicos dos corpos-de-prova Marrom compactados
submetidos à compressão uniaxial. 408
Tabela 8.8 – Condições de variação nula de volume para os solos
compactados. 416
Tabela 8.9 – Resistência à compressão não-confinada das amostras
compactadas. 430
Tabela 8.10 – Índices físicos dos corpos de prova Branco compactados dos
ensaios de compressão diametral. 433
Tabela 8.11 – Índices físicos dos corpos de prova Amarelo compactados dos
ensaios de compressão diametral. 433
Tabela 8.12 – Índices físicos dos corpos de prova Laranja compactados dos
ensaios de compressão diametral. 433
Tabela 8.13 – Índices físicos dos corpos de prova Vermelho compactados
dos ensaios de compressão diametral. 434
Tabela 8.14 – Índices físicos dos corpos de prova Marrom compactados dos
ensaios de compressão diametral. 434
Tabela 8.15 - Teor de umidade a partir do qual as rupturas no ensaio
Brasileiro tornavam-se dúcteis. 436
Tabela 8.16 – Resistência à tração máxima dos solos compactados. 445
Tabela 8.17 – Dados dos corpos-de-prova utilizados nos ensaios de
cisalhamento direto. 448
Tabela 8.18 – Resumo dos ensaios de cisalhamento direto dos solos
indeformados. 456
Tabela 8.19 – Equações potenciais propostas para os ensaios de
cisalhamento (Oliveira, 2006). 457
Tabela 8.20 – Índices físicos dos corpos de prova Branco submetidos à
compressão uniaxial. 460
Tabela 8.21 – Índices físicos dos corpos de prova Amarelo submetidos à

compressao uniaxiai. 461
Tabela 8.22 – Índices físicos dos corpos de prova Laranja submetidos à
compressão uniaxial. 461
Tabela 8.23 – Índices físicos dos corpos de prova Vermelho submetidos à
compressão uniaxial. 462
Tabela 8.24 – Índices físicos dos corpos de prova Marrom submetidos à
compressão uniaxial. 463
Tabela 8.25 – Resistência à compressão simples das amostras
indeformadas. 483
Tabela 8.26 – Índices físicos dos corpos de prova Branco dos ensaios de
compressão diametral. 485
Tabela 8.27 – Índices físicos dos corpos de prova Amarelo dos ensaios de
compressão diametral. 485
Tabela 8.28 – Índices físicos dos corpos de prova Laranja dos ensaios de
compressão diametral. 486
Tabela 8.29 – Índices físicos dos corpos de prova Vermelho dos ensaios de
compressão diametral. 486
Tabela 8.30 – Índices físicos dos corpos de prova Marrom dos ensaios de
compressão diametral. 487
Tabela 8.31 – Resistência à tração máxima dos solos indeformados. 500
Tabela 8.32 – Porcentagem de poros de acordo com o ensaio de
porosimetria de mercúrio e classificação IUPAC. 500
Tabela 8.33 – Parâmetros utilizados na previsão da resistência à
compressão não confinada pelo método de Vanapalli et al. (1996) para os
solos compactados. Variação de k para a obtenção do melhor ajuste. 510
Tabela 8.34 – Parâmetros utilizados na previsão da resistência à
compressão não confinada pelo método de Vanapalli et al. (1996) para os
solos compactados. Variação de k, C e $\hfill \square$ para a obtenção do melhor ajuste. 510
Tabela 8.35 – Parâmetros utilizados na previsão da resistência à
compressão não confinada pelo método de Vanapalli et al. (1996) para os
solos indeformados. 514
Tabela 8.36 - Valores característicos das curvas de retenção dos solos
indeformados. 521
Tabela 8.37 – Constantes dos solos estudados indeformados utilizadas para
o modelo de Rumpf (1961 apud Golding, 2006), Schubert (1982 apud
Heibrock et al. 2004) e Molenkamp e Nazemi (2003) 522

Tabela 8.38 – Resistência à tração calculada pelo método de Rumpf para o	
grau de saturação igual a 10%.	522
Tabela 8.39 – Resistência à tração calculada pelo método de Schubert para	
o grau de saturação igual a 10%.	523
Tabela 8.40 – Resistência à tração calculada pelo método de Molenkamp e	
Nazemi para o grau de saturação igual a 10%.	523
Tabela 8.41 – Constantes dos solos estudados compactados utilizadas para	
o modelo de Rumpf (1961 apud Golding, 2006), Schubert (1982 apud	
Heibrock et al, 2004) e Molenkamp e Nazemi (2003).	528
Tabela 8.42 - Valores característicos das curvas de retenção dos solos	
compactados.	528
Tabela 8.43 – Resistência à tração calculada pelo método de Rumpf para o	
grau de saturação igual a 10% para os solos compactados.	529
Tabela 8.44 – Resistência à tração calculada pelo método de Schubert para	
o grau de saturação igual a 10% para os solos compactados.	529
Tabela 8.45 – Resistência à tração calculada pelo método de Molenkamp e	
Nazemi para o grau de saturação igual a 10% para os solos compactados.	529
Tabela 9.1 – Dados dos ensaios triaxiais CU.	557
Tabela 9.2 – Pontos de mudança de comportamento na deformação axial.	569
Tabela 9.3 – Parâmetros de deformação do solo saturado.	571
Tabela 9.4 – Parâmetros de resistência de Mohr-Coulomb para as	
deformações de 2%, 4% e 6%.	574
Tabela 9.5 – Parâmetros de resistência de Mohr-Coulomb de acordo com os	
critérios de ruptura.	577
Tabela 9.6 – Ensaios triaxiais não saturados.	580
Tabela 9.7 – Dados dos corpos-de-prova dos ensaios triaxiais de sucção 50	
kPa.	581
Tabela 9.8 - Dados dos corpos-de-prova dos ensaios triaxiais de sucção	
150 kPa.	582
Tabela 9.9 – Dados dos corpos-de-prova ensaiados à deformação	
controlada com sucção de 150 kPa.	589
Tabela 9.10 – Pontos de mudança de comportamento para os ensaios não	
saturados, tensão controlada.	593
Tabela 9.11 – Pontos de mudança de comportamento para os ensaios não	
saturados, deformação controlada.	593
Tabela 9.12 – Parâmetros de deformação do solo não saturado.	603

Lista de símbolos e abreviações

= diâmetro da abertura da malha da peneira

% = porcentagem

° = grau

' = minutos

A = área da secção transversal

ABNT = Associação Brasileira de Normas Técnicas

Al⁺³ = cátion de Alumínio

ASTM = American Society for Testing and Materials

atm = amtosfera

Aw = teor de cimento

ba = índice de intemperismo químico

ba₁ = índice de intemperismo químico

C = capacidade de sucção

C = celsius

c = coesão

Ca⁺² = cátion de cálcio

CBR = Índice de Suporte Califórnia de Solos

Cc = coeficiente de compressibilidade

Cl⁻ = ânion de cloro

cm = centímetro

CTC = capacidade de troca catiônica

Cu = resistência à compressão não confinada

d = diâmetro

d₅₀ = diâmetro para o qual passam 50% do material

DCMM = Departamento de Ciências dos Materiais e Metalurgia

Df = dimensão fractal da superfície do material

DNER = Departamento Nacional de Estradas e Rodagem

e = espessura

e = índice de vazios

E = módulo de elasticidade

e₀ = índice de vazios inicial

EMBRAPA= Empresa Brasileira de Pesquisas Agrárias

E_{oed} = módulo de elasticidade edométrico

Ft = força capilar

g = aceleração gravitacional

g = grama

gf = grama-força

Gs = peso específico real dos grãos

h = altura

H⁺= cátion de hidrogênio

h= hora

i = condutividade hidráulica

i = corrente

I = índice de resistividade

IP = índice de plasticidade

IR = índice de resistividade

ISO = International Organization for Standardization

IUPAC = União Internacional da Química Pura e Aplicada

K⁺ = cátion de potássio

kg = quilograma

kgf = quilograma-força

km = quilometro

kN = quilonewton

kPa = quilopascal

kw = condutividade hidráulica

I = comprimento

L = litro

LACTEC = Instituto de Tecnologia para o Desenvolvimento

LAME = Laboratório de Materiais e Estruturas

LAMIR = Laboratório de Mineralogia da UFPR

LC = limite de contração

LL = limite de liquidez

LP = limite de plasticidade

In = logaritmo neperiano

log = logaritmo

LPH = Laboratório de Pesquisas Hidrogeológicas da UFPR

LVTD = Linearly Variable Differential Transformer

m= metro

mA = miliampère

mEq = miliequivalente

mg = miligrama

Mg⁺² = cátion de magnésio

min = minuto

mL= mililitro

mm= milímetro

MPa = megapascal

mV = milivolt

N = newton

n = porosidade

Na⁺ = cátion de sódio

NBR = norma brasileira

P = carga de fratura primária

p = pressão de vapor do ar

p" = poro-pressão de água negativa

p₀ = pressão de vapor de saturação

Pa = pascal

Pc = pressão capilar

Pe = pressão de entrada de ar

PEG = polietilenoglicol

pH = potencial de hidrogenização

PUC = Pontifícia Universidade Católica

PVC = poli cloreto de vinila

q = tensão cisalhante

R = constante universal dos gases

R = resistência

R₀ = resistividade para saturação de 100%

R² = coeficiente de correlação

RH = umidade relativa

R_t = resistividade para uma determinada saturação S_w

S = grau de saturação

s = segundo

SE = superfície específica

Si⁺⁴ = cátion de silício

S_w = grau de saturação para o teor de umidade w

T = capacidade de troca catiônica

T = temperatura

Ts = tensão superficial

u_a = poro-pressão de ar

UFPR = Universidade Federal do Paraná

 $\mu m = micro metro$

u_m = pressão de mercúrio

USCS = Sistema Unificado de Classificação de Solos

uw =poro-pressão de água

V = diferença de potencial

 V_0 = volume inicial

Va = volume de ar

w = umidade

 w_0 = umidade inicial

w_f = umidade final

w_{grav} = umidade gravimétrica

 w_{nat} = umidade natural

w_s = teor de umidade gravimétrica para solo saturado

w_{vol} = umidade volumétrica

Ø = ângulo de atrito

Ø = diâmetro

Ø' = ângulo de atrito efetivo

 Θ = teor de umidade normalizada

Δ = variação

ε_c = deformação específica de colapso

 $\epsilon_{\rm e}$ = deformação específica de expansão

 ε_{vN} = deformação volumétrica normalizada

χ = massa molecular da água

Ψ = sucção do solo

Ψr = grau de saturação residual

 Ω = ohm

 ω = velocidade angular

α = inclinação

 β = parâmetro de quantificação do intemperismo químico

 γ = peso específico

 γ_d = peso específico seco

 γ_g = peso específico real dos grãos

 γ_{nat} = peso específico natural

γ_w = peso específico da água

 θ r = teor de umidade volumétrico residual

θs = teor de umidade volumétrico saturado

 θ = teor de umidade volumétrico

 ρ = densidade do fluído

 ρ = resistividade do material

 ρ_{real} = massa específica real dos grãos de solo

ρ_{sat} = resistividade elétrica do solo saturado

 ρ_w = densidade da água

ρ_w = resistividade elétrica do fluído dos poros

 σ' = tensão efetiva

 σ'_1 = tensão efetiva maior

 σ'_3 = tensão efetiva menor

 σ_a = resistência à tração no regime capilar

 σ_n = tensão normal

 σ_t = resistência à tração no regime residual

 σ_{vm} = tensão de escoamento

 σ_{vv} = tensão de escoamento edométrica

 σ = tensão total normal

 σ_1 = tensão principal maior

 σ_3 = tensão principal menor

τ= tensão cisalhante