Estabilidade de Tensão

2.1 Introdução

O objetivo deste capítulo é mostrar a possibilidade de existência de fenômenos que se possa assemelhar àqueles observados na operação de sistemas elétricos, e associados ao colapso de tensão. Mais precisamente, observar a existência de regiões de operação onde o efeito de ações usuais de controle de tensão é oposto ao esperado.

O sistema é dito seguro, do ponto de vista de tensão, se possui a capacidade de não somente operar de forma estável, mas também de manter esta estabilidade frente a distúrbios e aumentos de seu carregamento. Define-se que um sistema elétrico de potência é estável no ponto de operação se, após um distúrbio, forem mantidos dentro dos limites os estados (tensões, ângulos, etc) do sistema e se for atingido um novo ponto de equilíbrio.

Para a compreensão do fenômeno de estabilidade de tensão, será utilizado o circuito série de duas barras da Figura 2.1, composto de um gerador com capacidade infinita de geração, uma carga modelada por potência constante, e uma linha de transmissão sem limite térmico. A análise de um caso simples fornece mais chances de se obter explicações simples [Prada, 1992].

A partir deste circuito de 2 barras deduz-se as equações da potência ativa e reativa "saindo" da barra terminal.

Figura 2.1 – Diagrama unifilar do sistema série de duas barras

$$S_{LG}^{*} = P_{LG} - jQ_{LG} = V_{L}^{*} I_{LG}$$
 (2.1)

$$I_{LG} = \frac{V_L \angle \theta_L - V_G \angle \theta_G}{Z_t \angle \alpha_t}$$
(2.2)

$$V_{L}^{*} = V_{L} \angle -\theta_{L}$$
(2.3)

Substituindo-se (2.2) e (2.3) em (2.1):

$$S_{LG}^{*} = \frac{V_{L}^{2} \cdot \cos(\alpha_{t})}{Z_{t}} - \frac{V_{L} \cdot V_{G} \cdot \cos(\theta_{LG} + \alpha_{t})}{Z_{t}} - j \left[\frac{V_{L}^{2} \cdot sen(\alpha_{t})}{Z_{t}} - \frac{V_{L} \cdot V_{G} \cdot sen(\theta_{LG} + \alpha_{t})}{Z_{t}} \right]$$
(2.4)

Separando-se (2.4) em parte real e imaginária:

$$P_{LG} = -P_L = \frac{V_L^2}{Z_t} \cdot \cos \alpha_t - \frac{V_L \cdot V_G \cdot \cos(\theta_{LG} + \alpha_t)}{Z_t}$$
(2.5)

$$Q_{LG} = -Q_L = \frac{V_L^2}{Z_t} \cdot \operatorname{sen}\alpha_t - \frac{V_L \cdot V_G \cdot \operatorname{sen}(\theta_{LG} + \alpha_t)}{Z_t}$$
(2.6)

Variando-se θ_{LG} em (2.5), pode-se calcular V_L e, portanto, traçar-se a curva para P_{LG} constante no plano θ V.

Variando-se θ_{LG} em (2.6), pode-se calcular V_L e, portanto, traçar-se a curva para Q_{LG} constante no plano θ V.

A tangente do ângulo do fator de potência na carga é:

$$\tan \phi = \frac{Q_{LG}}{P_{LG}} = \frac{\frac{V_L^2}{Z_t} \cdot \sec \alpha_t - \frac{V_L \cdot V_G \cdot \sec(\theta_{LG} + \alpha_t)}{Z_t}}{\frac{V_L^2}{Z_t} \cdot \cos \alpha_t - \frac{V_L \cdot V_G \cdot \cos(\theta_{LG} + \alpha_t)}{Z_t}}$$
(2.7)

A equação (2.7) relaciona o módulo e o ângulo da tensão na barra de carga num sistema série de duas barras e o ângulo do fator de potência na

carga. Para ϕ constante, variando-se θ_{LG} em (2.7), pode-se calcular V_L e, portanto, traçar-se a curva para ϕ constante no plano θ V.

2.2

Curvas P, Q e ϕ Constantes

No circuito simples da Figura 2.1 em análise, as equações estáticas de fluxo de carga coincidem com as equações de fluxo de potência ativa e reativa chegando na barra de carga, igualadas com a potência consumida na carga. Conseqüentemente, a variação dos valores de carga está diretamente relacionada com a variação do fluxo de potência na linha de transmissão. Deve notar-se que não houve preocupação quanto aos valores quantitativos das diversas grandezas envolvidas nos gráficos das figuras a seguir. A opção escolhida foi manter a análise qualitativa, tomando-se valores numéricos quaisquer, independente de sua possibilidade física para o problema. A propósito, somente são considerados para análise, casos em que a carga ativa seja maior ou igual a zero, ou seja, não se estuda a possibilidade da ser, na verdade, um gerador.

As equações (2.5), (2.6) e (2.7) podem ser reescritas como:

$$V_{L}^{2} \cdot \left[\frac{\cos \alpha_{t}}{Z_{t}} \right] - V_{L} \cdot \left[\frac{V_{G} \cdot \cos(\theta_{LG} + \alpha_{t})}{Z_{t}} \right] + \left[P_{L} \right] = 0$$
(2.8)

$$V_{L}^{2} \left[\frac{sen\alpha_{t}}{Z_{t}} \right] - V_{L} \left[\frac{V_{G}.sen(\theta_{LG} + \alpha_{t})}{Z_{t}} \right] + \left[Q_{L} \right] = 0$$
(2.9)

$$V_{L} = \frac{V_{G} \cdot \left[\sec(\theta_{LG} + \alpha_{t}) - \tan\phi \cdot \cos(\theta_{LG} + \alpha_{t}) \right]}{\sec\alpha_{t} - \tan\phi \cdot \cos(\alpha_{t})}$$
(2.10)

Usando-se (2.8), (2.9) e (2.10), as curvas θ V na Figura 2.2 para diferentes valores de P, Q e ϕ constantes foram traçadas. Os dados numéricos utilizados foram $\dot{V}_G = 1 \angle 0^\circ$ pu e $\dot{Z}_t = 0.2 \angle 70^\circ$ pu.

Figura 2.2 - Três possibilidades de solução para a tensão na carga com mesmo fator de potência

Na Figura 2.2 é ilustrado um exemplo para ϕ =41,19° indutivo. Para P₁=0,80 pu e Q₁=0,70 pu, duas soluções para a tensão de carga se apresentam em V_L=0,741 pu e V_L=0,287 pu (curva P₁ e Q₁ se tocam em dois pontos). À medida que P e Q crescem, mantendo ϕ constante, as duas soluções se aproximam até que em P₂=1,00 pu e Q₂=0,88 pu a solução é única em V_L= 0,516 pu (curva P₂ e Q₂ se tocam num único ponto). Para cargas maiores do que essa, por exemplo P₃=1,20 pu e Q₃=1,05 pu, não existe solução para a tensão (curva P₃ e Q₃ não se tocam em nenhum ponto). Conclui-se graficamente que existe um limite máximo para cada fator de potência de carga.

Na Tabela 2.1 são mostradas as três possibilidades de solução para tensão na carga, mantendo o mesmo fator de potência, quando as curvas P, Q e ϕ da Figura 2.2 se tocam em dois, um e nenhum ponto (sempre com P≥0).

Tabela 2.1 - Três possibilidades de solução para a tensão na carga com mesmo fator de potência

N°	P (pu)	Q (pu)	φ (graus)	V _L (pu)	θ_{LG} (graus)
1	0,80	0,70	41,19	0,741 e 0,287	-7,92 e -20,89
2	1,00	0,88	41,19	0,516	-14,41
3	1,20	1,05	41,19	-	-

Na Figura 2.3 foi traçada a curva para $\phi = 41,19^{\circ}$ no plano SV para a barra de carga da Figura 2.1. Deve-se notar que o ponto de máximo P, assinalado na Figura 2.3, corresponde aos dados da segunda linha da Tabela 2.1, e que foram tiradas da Figura 2.2, onde as curvas P₂ = 1,00 pu e Q₂ = 0,88 pu se tocam num único ponto. Nesse ponto de máximo se satisfaz a condição de que a impedância de carga é igual em módulo à impedância da linha de transmissão, e então Z_c = 0,2 pu.

Figura 2.3 - Curva para fator de potência constante na barra de carga no plano SV

2.3

O Limite de Estabilidade de Tensão (LET)

A corrente que flui no circuito mostrado na Figura 2.4, correspondente ao diagrama unifilar da Figura 2.1, é:

$$\dot{I}_{GL} = \frac{\dot{V}_{G}}{Z_{t} \angle \alpha_{t} + Z_{c} \angle \phi}$$
(2.11)

$$I_{GL} = \frac{V_G}{\sqrt{(Z_t \cdot \cos \alpha_t + Z_c \cdot \cos \phi)^2 + (Z_t \cdot \sin \alpha_t + Z_c \cdot \sin \phi)^2}}$$
(2.12)

Figura 2.4 - Circuito com as impedâncias da transmissão e da carga

A potência ativa que "sai" da barra de carga, e que é igual ao negativo da potência consumida na carga é:

$$P_{LG} = -P_{L} = -I_{GL}^{2} Z_{c} \cos \phi$$
 (2.13)

Substituindo (2.12) em (2.13):

$$P_{LG} = -\frac{V_{G}^{2}.Z_{c}.\cos\phi}{Z_{t}^{2}.\cos^{2}\alpha_{t} + 2.Z_{t}.Z_{c}.\cos\alpha_{t}.\cos\phi + Z_{c}^{2}.\cos^{2}\phi + b}$$
(2.14)

onde:

$$b = Z_t^2 . sen^2 \alpha_t + 2.Z_t . Z_c . sen \alpha_t . sen \phi + Z_c^2 . sen^2 \phi$$
(2.15)

Reescrevendo:

$$P_{LG} = -P_{L} = -\frac{V_{G}^{2}.Z_{c}.\cos\phi}{Z_{t}^{2} + Z_{c}^{2} + 2.Z_{t}.Z_{c}.\cos(\phi - \alpha_{t})}$$
(2.16)

De (2.16), calcula-se o valor de Z_c que maximiza a potência ativa que chega na barra de carga através da primeira derivada de P_L :

$$\frac{\partial P_{L}}{\partial Z_{c}} = \frac{V_{G}^{2} \cdot \cos \phi . [Z_{t}^{2} + Z_{c}^{2} + 2.Z_{t} \cdot Z_{c} \cdot \cos(\alpha_{t} - \phi)]}{[Z_{t}^{2} + Z_{c}^{2} + 2.Z_{t} \cdot Z_{c} \cdot \cos(\alpha_{t} - \phi)]^{2}} \\ - \frac{Z_{C} \cdot V_{G}^{2} \cdot \cos \phi . [2.Z_{c} + 2.Z_{t} \cdot \cos(\alpha_{t} - \phi)]}{[Z_{t}^{2} + Z_{c}^{2} + 2.Z_{t} \cdot Z_{c} \cdot \cos(\alpha_{t} - \phi)]^{2}} = 0$$
(2.17)

Logo:

$$V_{G}^{2}.Z_{t}^{2}.\cos\phi + V_{G}^{2}.Z_{c}^{2}.\cos\phi + 2.V_{G}^{2}.Z_{t}.Z_{c}.\cos\phi.\cos(\alpha_{t} - \phi) - 2V_{G}^{2}.Z_{c}^{2}.\cos\phi - 2V_{G}^{2}.Z_{c}.Z_{t}.\cos\phi.\cos(\alpha_{t} - \phi) = 0$$
(2.18)

que é reduzido a:

$$V_{G}^{2}.Z_{t}^{2}.\cos\phi = V_{G}^{2}.Z_{c}^{2}.\cos\phi \Longrightarrow Z_{c} = Z_{t}$$

$$(2.19)$$

Calcula-se a segunda derivada de P_L em relação à Z_c para conferir se é efetivamente um máximo:

$$\frac{\partial^2 P_L}{\partial Z_c^2} /_{Z_c = Z_t} < 0 \tag{2.20}$$

De (2.19) e (2.20), conclui-se que P_{L} é máximo quando:

$$\boxed{\mathsf{Z}_{\mathrm{c}}=\mathsf{Z}_{\mathrm{t}}}\tag{2.21}$$

Substituindo-se (2.21) em (2.16) e chamando de P_L^C à máxima carga que pode ser alimentada no ponto de operação, tem-se:

$$P_{L}^{C} = \frac{V_{G}^{2}.Z_{c}.\cos\phi}{2.Z_{c}^{2}.[1 + \cos(\phi - \alpha_{t})]}$$
(2.22)

que é reduzido a:

$$\mathsf{P}_{\mathsf{L}}^{\mathsf{C}} = \frac{\mathsf{V}_{\mathsf{G}}^{2} \cdot \cos \phi}{4.\mathsf{Z}_{\mathsf{c}} \cdot \cos^{2} \left(\frac{\phi - \alpha_{\mathsf{t}}}{2}\right)} \tag{2.23}$$

Para P_L^C e uma dada impedância de carga Z_c com fator de potência ϕ :

$$V_{L} = Z_{c}.I_{GL} \Longrightarrow V_{L} = \frac{V_{G}.Z_{c}}{\sqrt{2.Z_{t}^{2}.(1 + \cos(\phi - \alpha_{t}))}}$$
(2.24)

Usando-se (2.21):

$$V_{L} = \frac{V_{G}}{\sqrt{4.\cos^{2}\left(\frac{\phi - \alpha_{t}}{2}\right)}}$$
(2.25)

Chamando de V_L^C o módulo da tensão na barra terminal no ponto de operação correspondente à máxima carga que pode ser alimentada:

$$V_{L}^{C} = \frac{V_{G}}{2.\cos\left(\frac{\phi - \alpha_{t}}{2}\right)}$$
(2.26)

Por outro lado:

$$\dot{V}_{L} = \dot{Z}_{c}.\dot{I}_{GL} \quad \text{logo} \quad V_{L} \angle \theta_{L} = Z_{c} \angle \phi \frac{V_{G}}{Z_{t} \angle \alpha_{t} + Z_{c} \angle \phi}$$
(2.27)

Considerando só a parte real e usando (2.21):

$$V_{L} \cos \theta_{L} = \frac{V_{G} (\cos \alpha_{t} \cos \phi + \cos^{2} \phi + \sin \alpha_{t} \sin \phi + \sin^{2} \phi)}{d} \qquad (2.28)$$

onde:

$$d = [\cos^{2} \alpha_{t} + 2.\cos \alpha_{t}.\cos \phi + \cos^{2} \phi + sen^{2} \alpha_{t} + 2.sen \alpha_{t}.sen \phi + sen^{2} \phi]$$
(2.29)

$$V_{L} \cos \theta_{L} = \frac{V_{G}.(\cos \alpha_{t}.\cos \phi + \sin \alpha_{t}.\sin \phi + 1)}{2.\cos \alpha_{t}.\cos \phi + 2.\sin \alpha_{t}.\sin \phi + 2}$$

$$= \frac{V_{G}.(\cos \alpha_{t}.\cos \phi + \sin \alpha_{t}.\sin \phi + 1)}{2.(\cos \alpha_{t}.\cos \phi + \sin \alpha_{t}.\sin \phi + 1)}$$
(2.30)

que é reduzido a:

$$V_{\rm L} = \frac{V_{\rm G}}{2.\cos\theta_{\rm L}} \tag{2.31}$$

Igualando-se (2.26) a (2.31), obtém-se:

$$\frac{V_{G}}{2.\cos\theta_{L}} = \frac{V_{G}}{2.\cos\left[\frac{\phi - \alpha_{t}}{2}\right]}$$
(2.32)

Chamando de θ_L^C o ângulo da tensão na barra terminal no ponto de operação correspondente à máxima carga que pode ser alimentada:

$$\theta_{\rm L}^{\rm C} = \frac{\phi - \alpha_{\rm t}}{2} \tag{2.33}$$

O LET é o lugar geométrico das tensões em módulo e ângulo ($V_L^C e \theta_L^C$), onde o módulo da impedância equivalente da carga é igual ao módulo da impedância da linha de transmissão série. O LET representa os pontos da máxima transmissão de potência à carga, uma para cada fator de potência (o que depende da parte reativa e/ou eventual compensação reativa da carga). Em outras palavras, variando-se ϕ e usando-se (2.5), (2.31) e (2.33) traça-se o LET no plano SV, como mostrado na Figura 2.5.

Figura 2.5 - Limite de estabilidade de tensão no plano SV

Como as curvas são traçadas para ϕ constante, usar par de eixos SV, PV ou QV é indiferente.

2.4

A Existência da Potência Transmitida "Maximum Maximorum"

São mostradas na Figura 2.6 várias curvas para P constante, entre 0,00 e 3,65 pu. Quanto mais interna a curva, maior a potência ativa transmitida para a carga. A curva vai diminuindo o perímetro até que se reduz a um único ponto e que, portanto, corresponde à carga "maximum maximorum" que pode ser atendida.

Mostra-se também na Figura 2.6 seis diferentes níveis de carga reativa constante a partir de Q=1,29 pu indutiva até Q=-10,04 pu capacitiva. É interessante notar a mudança na forma das curvas à medida que a carga reativa vai diminuindo (tornando-se mais capacitivo), e que as curvas não são fechadas. Não existe um fluxo máximo de potência reativa que pode chegar na barra de carga (com P≥0).

Figura 2.6 - Lugar geométrico da tensão na carga para todos os possíveis diferentes níveis de potência ativa constante e para alguns níveis de potência reativa constante

Na Figura 2.6, no ponto onde P₆=3,65 pu é o máximo fluxo de potência ativa, a carga reativa é Q₆=-10,04 pu (capacitiva). Estes valores representam um ângulo de fator de potência de -70°. Isso é um resultado conhecido que diz que a máxima absorção de potência ativa por uma impedância de carga ocorre quando esta impedância é igual em módulo e conjugada em ângulo, em relação à impedância série da linha de transmissão. No exemplo o módulo da impedância de carga seria $1,462^2 / \sqrt{3,65^2 + 10,04^2}$ que é igual a 0,2 pu. O ângulo da impedância de carga seria arctg(-10,04/3,65) que é igual a -70°, como se queria obter.

O LET passa por todos os pontos onde as curvas P e Q constantes se tocam num único ponto no plano θ V, isto é, une todos os pontos de máximo carregamento. Esse valor máximo é dependente do ângulo do fator de potência (na Figura 2.6, foi traçado para -90° ≤ ϕ ≤ 90° utilizando (2.31) e (2.33)).

O LET separa as duas regiões de trabalho: região A ou região superior da curva, onde se tem controle sobre a tensão, e a região B ou região inferior da curva, onde ações de controle de tensão podem ter efeitos opostos ao esperado [Prada, R.B., Santos, J.O.R., Greenhalgh, A.B., Seelig, B.H.T., Palomino, E.G.C., 2001]. Na Figura 2.7 está mostrada a curva para ϕ constante no plano SV antes e após a conexão de um capacitor na barra de carga. Observa-se que se o ponto de operação fosse a ponto A, a introdução do capacitor aumentaria a tensão

para o ponto A', como esperado (supondo o consumo de potência na carga constante). Por outro lado, observa-se que se o ponto de operação fosse a ponto B, a introdução do capacitor diminuiria a tensão para o ponto B', contrariamente ao esperado. Isso será demonstrado na Seção 2.7.

Figura 2.7 - Aumento e diminuição da tensão respectivamente na região superior e inferior da curva com a introdução de um capacitor

Observa-se na Figura 2.6 que as curvas para P constante tem a sua derivada, em relação a defasagem do ângulo da tensão, com valor nulo sempre no mesmo valor de ângulo (θ_{LG} =-70°). Então, uma reta paralela ao eixo V e cortando (perpendicularmente) o eixo θ em θ_{LG} =-70°, define a fronteira LEA, Limite de Estabilidade Estática Angular (ver Apêndice A). Do ponto de vista angular, os lugares geométricos onde o sistema é estaticamente estável são para ângulos entre 20° e -70°, e onde o sistema é estaticamente instável são para ângulos de tensão entre -70° e -160°. Neste máximo defasamento angular de tensões, a carga ativa P pode adquirir qualquer valor entre zero e um certo máximo (na Figura 2.6 o máximo é P₆=3,65 pu).

É importante notar que os dois limites LET e LEA acima descritos só coincidem em um único ponto: P₆=3,65 pu e Q₆=-10,04 pu com θ_{LG} =-70° e V_L = 1,462 pu.

Os valores correspondentes à potência "maximum maximorum" podem ser calculados analiticamente. O valor da defasagem angular na barra L que maximiza a potência elétrica transmitida é calculado através da primeira derivada de (2.5):

$$\frac{\partial P_L}{\partial \theta_L} = -\frac{V_L \cdot V_G}{Z_t} \cdot \operatorname{sen}(\theta_L - \theta_G + \alpha_t) = 0 \text{, onde } \theta_G = 0^{\circ}$$
(2.34)

que é reduzido a:

$$\theta_{L} = -\alpha_{t}$$
e
 $\theta_{L} = -\alpha_{t} + \pi$
(2.35)

A derivada segunda de (2.34) é negativa em $\,\theta_{\text{L}}\,=\,-\alpha_t\,$ obtida de (2.35) :

$$\frac{\partial^2 \mathsf{P}_{\mathsf{L}}}{\partial \theta_{\mathsf{L}}^2} < 0 \tag{2.36}$$

$$-\frac{V_{L}.V_{G}}{Z_{t}}.\cos(-\alpha_{t}-0^{\circ}+\alpha_{t}) < 0$$
(2.37)

e então, o ângulo corresponde a P_L "maximum maximorum" é:

$$\theta_{\rm L}^{\rm C} = -\alpha_{\rm t} \tag{2.38}$$

O valor da tensão V_L na barra L que corresponde a P_L "maximum maximorum" é obtido através da primeira derivada de (2.5):

$$\frac{\partial P_L}{\partial V_L}(\theta_L^C) = 0$$
(2.39)

$$\frac{\partial P_L}{\partial V_L} = -2 \cdot \frac{V_L}{Z_t} \cdot \cos(\alpha_t) + \frac{V_G}{Z_t} \cdot \cos(\theta_L - \theta_G + \alpha_t)$$
(2.40)

$$V_{L}^{C} = \frac{V_{G}}{2.\cos(\theta_{L})}$$
(2.41)

A derivada segunda de (2.5) é negativa, garantindo que trata-se de um ponto de máximo:

$$\frac{\partial^2 P_L}{\partial V_L^2} (\theta_L^C) < 0$$
(2.42)

$$-2.\frac{\cos(\alpha_t)}{Z_t} < 0 \tag{2.43}$$

Com θ_L =-70° em (2.41) obtém-se V_L=1,4619 pu. Substituindo θ_L =-70° e V_L=1,4619 pu em (2.5) obtém-se o valor do "maximum maximorum" da potência elétrica possível de ser transmitida à carga: P_L=3,6547 pu, valor que confere com o encontrado quando da construção das curvas mostradas na Figura 2.6.

2.5

O Porquê da Potência Transmitida Máxima para a Carga

Nas Seções 2.3 e 2.4 determinou-se a existência de uma máxima potência ativa e reativa que pode chegar à barra de carga. O valor desta potência depende do fator de potência e atinge um "maximum maximorum" como determinado na Seção 2.5. Partindo-se de carga nula, sistema em vazio / impedância equivalente de carga infinita, a potência consumida na carga é nula. À medida que a impedância equivalente de carga diminui, a potência consumida na carga aumenta. Entretanto, a partir de um certo ponto, mesmo com o contínuo decréscimo da impedância da carga, a potência consumida na carga passa a diminuir. Esta seção explica o porquê deste acontecimento.

Define-se a potência elétrica consumida na carga em um ponto "k" e em outro ponto "k+1" como sendo:

$$\mathsf{P}_{\mathsf{L}}^{\mathsf{k}} = \mathsf{V}_{\mathsf{L}}^{\mathsf{k}}.\mathsf{I}_{\mathsf{L}}^{\mathsf{k}}.\cos\phi \tag{2.44}$$

 $P_{L}^{k+1} = V_{L}^{k+1} I_{L}^{k+1} \cos \phi$ (2.45)

onde:

 V_L^k e I_L^k são os módulos da tensão e corrente na carga num ponto "k" V_L^{k+1} e I_L^{k+1} são os módulos da tensão e corrente na carga num ponto "k+1"

Através de (2.44) e (2.45) pode-se calcular as variações de potência entre os dois pontos, dadas por:

$$\Delta P_{l}^{k+1} = P_{l}^{k+1} - P_{l}^{k} \tag{2.46}$$

$$\Delta P_{L}^{k+1} = V_{L}^{k+1} I_{L}^{k+1} \cos \phi - V_{L}^{k} I_{L}^{k} \cos \phi$$
(2.47)

A equação (2.47), e sem perda de generalidade, pode ser expressa através das variações de tensão e corrente como mostrado em (2.48) e (2.49):

$$\Delta P_{L}^{k+1} = (V_{L}^{k} + \Delta V_{L}^{k+1})(I_{L}^{k} + \Delta I_{L}^{k+1}) \cdot \cos \phi - (V_{L}^{k}.I_{L}^{k}) \cdot \cos \phi$$
(2.48)

$$\Delta \mathsf{P}_{\mathsf{L}}^{k+1} = \cos \phi [(\mathsf{V}_{\mathsf{L}}^{k} \Delta \mathsf{I}_{\mathsf{L}}^{k+1}) + (\mathsf{I}_{\mathsf{L}}^{k} \Delta \mathsf{V}_{\mathsf{L}}^{k+1} + \Delta \mathsf{V}_{\mathsf{L}}^{k+1} \Delta \mathsf{I}_{\mathsf{L}}^{k+1})]$$
(2.49)

Para todo k+1, à medida que se aumenta a carga:

$$\Delta V_L^{k+1} < 0$$
, as variações da tensão são negativas (2.50)

 $\Delta I_L^{k+1} > 0$, as variações da corrente são positivas (2.51)

Na Tabela 2.2 são mostrados pontos de operação da curva ϕ constante, sendo que os primeiros pertencem à parte superior da curva SV, enquanto que os últimos pertencem à parte inferior. Para exemplificar como funciona (2.49), consideram-se dois pontos de operação da Tabela 2.2.

k	P_L^k	VLk	θ_{L}^{k}	IL	ΔV_L^{k+1}	ΔI_L^{k+1}	ΔP_L^{k+1}
	(pu)	(pu)	(graus)	(pu)	(pu)	(pu)	(pu)
1	0,00000	1,00000	0,00	0,00000			
2	0,19459	0,95206	-1,50	0,27160	-0,04794	0,27160	0,19459
3	0,36919	0,90347	-3,00	0,54301	-0,04859	0,27141	0,17460
4	0,52332	0,85426	-4,50	0,81405	-0,04921	0,27104	0,15413
5	0,65656	0,80446	-6,00	1,08453	-0,04980	0,27048	0,13324
6	0,76854	0,75412	-7,50	1,35427	-0,05035	0,26974	0,11199
7	0,85896	0,70325	-9,00	1,62308	-0,05086	0,26881	0,09042
8	0,92758	0,65191	-10,50	1,89078	-0,05135	0,26770	0,06861
9	0,97419	0,60011	-12,00	2,15718	-0,05179	0,26640	0,04661
10	0,99868	0,54791	-13,50	2,42210	-0,05220	0,26492	0,02449
11	1,00097	0,49533	-15,00	2,68537	-0,05258	0,26326	0,00229
12	0,98107	0,44241	-16,50	2,94679	-0,05292	0,26142	-0,01990
13	0,93902	0,38919	-18,00	3,20619	-0,05322	0,25940	-0,04205
14	0,87494	0,33570	-19,50	3,46340	-0,05349	0,25721	-0,06408
15	0,78901	0,28198	-21,00	3,71823	-0,05372	0,25483	-0,08593
16	0,68145	0,22807	-22,50	3,97051	-0,05391	0,25228	-0,10755
17	0,55258	0,17400	-24,00	4,22008	-0,05407	0,24956	-0,12888
18	0,40273	0,11981	-25,50	4,46675	-0,05419	0,24667	-0,14985
19	0,23233	0,06554	-27,00	4,71036	-0,05427	0,24361	-0,17041
20	0,04183	0,01123	-28,50	4,95074	-0,05432	0,24038	-0,19050

Tabela 2.2 - Variações de tensão, corrente e potência na barra de carga

a) Ponto de operação na parte superior da curva

Considerando os valores de k=8 na Tabela 2.2:

$$\Delta \mathsf{P}_{\mathsf{L}}^{k+1} = \cos \phi \left[(\mathsf{V}_{\mathsf{L}}^{k} \Delta \mathsf{I}_{\mathsf{L}}^{k+1}) + (\mathsf{I}_{\mathsf{L}}^{k} \Delta \mathsf{V}_{\mathsf{L}}^{k+1} + \Delta \mathsf{V}_{\mathsf{L}}^{k+1} \Delta \mathsf{I}_{\mathsf{L}}^{k+1}) \right] = +0,04661 \text{ pu}$$

onde os sinais + e - sobre a fórmula indicam se o termo é, respectivamente, positivo ou negativo.

A potência transmitida aumenta $(\Delta P_L^{k+1} > 0)$ até um certo máximo carregamento enquanto o efeito de variações positivas do módulo da corrente $\Delta I_L^{k+1} > 0$ predominarem sobre as variações negativas do módulo da tensão $\Delta V_L^{k+1} < 0$ e de tal forma que: $[V_L^k.\Delta I_L^{k+1}] > [[I_L^k.\Delta V_L^{k+1} + \Delta V_L^{k+1}.\Delta I_L^{k+1}]]$.

Então, no ponto k+1=9, $P_L^9 = P_L^8 + \Delta P_L^9 =$ +0,97419 pu, o que confere com o valor mostrado para k=9 na Tabela 2.2.

b) Ponto de operação na parte inferior da curva

Considerando os valores para k=14 na Tabela 2.2:

$$\Delta P_{L}^{k+1} = \cos \phi \left[\left(V_{L}^{k} \Delta I_{L}^{k+1} \right) \right] + \left[\left(I_{L}^{k} \Delta V_{L}^{k+1} + \Delta V_{L}^{k+1} \Delta I_{L}^{k+1} \right) \right] = -0,08593 \text{ pu}$$

A potência transmitida diminui ($\Delta P_L^{k+1} < 0$) a partir de um certo máximo carregamento devido ao efeito das variações negativas do módulo da tensão $\Delta V_L^{k+1} < 0$ predominarem sobre as variações positivas da corrente $\Delta I_L^{k+1} > 0$ e de tal forma que: $[V_L^k.\Delta I_L^{k+1}] < |[I_L^k.\Delta V_L^{k+1} + \Delta V_L^{k+1}.\Delta I_L^{k+1}]|$.

Então, no ponto k+1=15, $P_L^{15} = P_L^{14} + \Delta P_L^{15} = +0,78901$ pu, que confere com o valor mostrado para k=15 na Tabela 2.2.

Mostrou-se analítica e numericamente que a potência ativa consumida na carga aumenta, atinge um máximo e passa a diminuir. Na Figura 2.8 esse fato é mostrado graficamente.

Figura 2.8 - Potência ativa consumida na carga com fator de potência constante

2.6 O Porquê da Introdução de um Capacitor Diminui a Tensão

Analisa-se porque, quando se conecta um capacitor de 50 Mvar em paralelo com a carga, a tensão aumenta quando o ponto de operação está na região superior da curva para ϕ constante, enquanto que a tensão diminui quando o ponto de operação está na região inferior da curva. Nas Figuras 2.9 e 2.10 são mostrados os circuitos sem e com capacitor respectivamente, que serão utilizados nesta análise.

Figura 2.9 - Circuito sem capacitor

Figura 2.10 - Circuito com capacitor

Na região superior da curva quando se passa do ponto A da curva sem capacitor para o ponto A' com capacitor, a tensão aumenta (Figura 2.7) e para manter constante a potência, a corrente que flui pela carga tem que diminuir: $P_L=\uparrow V_L. \downarrow I_L.cos \phi$. Na região inferior da curva acontece o efeito contrário quando se passa do ponto B da curva sem capacitor para o ponto B' com capacitor, isto é, a tensão diminui (Figura 2.7) e para manter a potência constante, a corrente que flui pela carga tem que aumentar: $P_L=\downarrow V_L.\uparrow I_L.cos \phi$.

O objetivo agora é explicar esse comportamento de forma analítica. Define-se a potência elétrica consumida na carga em um ponto "k" e em outro ponto "k+1" que representam pontos de operação em curvas SV diferentes.

O modelo de carga é potência constante e, portanto, de (2.44) e (2.45) tem-se:

$$P_{L}^{k} = P_{L}^{k+1}$$
 (2.52)

$$(Z_{L}^{k}).(I_{L}^{k})^{2}.\cos\phi = (Z_{L}^{k} + \Delta Z_{L}^{K+1}).(I_{L}^{k} + \Delta I_{L}^{k+1})^{2}.\cos\phi$$
(2.53)

Há uma diferença entre a impedância equivalente da carga sem e com capacitor (ΔZ_L^{k+1}) porque a carga deve consumir a mesma quantidade de potência ativa sem e com capacitor.

As tensões na carga em um ponto "k" e em outro ponto "k+1", onde os termos Z_L^k , I_L^k , ΔZ_L^{k+1} e ΔI_L^{k+1} satisfazem (2.53), podem ser escritas como:

$$V_{l}^{k} = Z_{l}^{k} . I_{l}^{k}$$
(2.54)

$$V_{L}^{k+1} = (Z_{L}^{k} + \Delta Z_{L}^{k+1}) \cdot (I_{L}^{k} + \Delta I_{L}^{k+1})$$
(2.55)

A variação do módulo da tensão na carga pode ser calculada subtraindo a tensão entre os pontos "k+1" e "k":

$$\Delta V_{L}^{k+1} = V_{L}^{k+1} - V_{L}^{k}$$
(2.56)

$$\Delta V_{L}^{k+1} = [I_{L}^{k} \Delta Z_{L}^{k+1}] + [Z_{L}^{k} \Delta I_{L}^{k+1} + \Delta Z_{L}^{k+1} \Delta I_{L}^{k+1}]$$
(2.57)

Para exemplificar como funciona (2.57) e poder explicar o aumento ou decréscimo da tensão na carga, com a introdução de um capacitor, consideramse dois pontos de operação da Tabela 2.3.

Na Região Superior da Curva									
-k	Curva sem Capacitor			Curva com capacitor				k 1	k . 1
P [™]	VLk	Z^k_L	ΙĻ	V_L^{k+1}	Z_L^{k+1}	I_L^{k+1}	ΔZ_{L}^{K+1}	$\Delta I_{L}^{\kappa+1}$	ΔV_{L}^{K+1}
(pu)	(pu)	(pu)	(pu)	(pu)	(pu)	(pu)	(pu)	(pu)	(pu)
0,2	0,9505	3,3912	0,2803	1,0530	4,1822	0,2518	0,7910	-0,0285	+0,1025
0,5	0,8626	1,1223	0,7685	0,9657	1,4084	0,6856	0,2861	-0,0829	+0,1031
0,9	0,6750	0,3811	1,7710	0,7969	0,5309	1,5010	0,1498	-0,2700	+0,1219
Na Região Inferior da Curva									
	Curva sem Capacitor			Curva com capacitor			. k⊥1	k+1	
ΡĽ	V	Z	Ik	V_{I}^{k+1}	Z_{l}^{k+1}	I_{L}^{k+1}	ΔZ_{L}^{K+1}	ΔI_{L}^{K+1}	ΔV_{L}^{K+1}
(pu)	(pu)	(pu)	(pu)	(pu)	_∟ (pu)	(pu)	(pu)	(pu)	(pu)
0,2	0,0564	0,0119	4,7510	0,0560	0,0117	4,7716	-0,0002	0,0206	-0,0004
0,5	0,1541	0,0357	4,3112	0,1518	0,0347	4,3756	-0,0010	0,0644	-0,0023
0,9	0,3546	0,1051	3,3731	0,3316	0,0918	3,6107	-0,0133	0,2376	-0,0230

Tabela 2.3 - Pontos de operação para avaliar o aumento ou decréscimo da tensão com a introdução de um capacitor

a) Ponto de operação na parte superior da curva

Considerando os valores para P_L^k =+0,9 pu da Tabela 2.3:

.....

$$\Delta V_{L}^{k+1} = \boxed{\left[I_{L}^{k} \cdot \Delta Z_{L}^{k+1}\right]} + \boxed{\left[Z_{L}^{k} \cdot \Delta I_{L}^{k+1} + \Delta Z_{L}^{k+1} \cdot \Delta I_{L}^{k+1}\right]} = +0,12195 \text{ pu}$$

onde os sinais + e - sobre a fórmula indicam se o termo é, respectivamente, positivo ou negativo.

A elevação da tensão ($\Delta V_L^{k+1} > 0$) acontece enquanto o efeito de variações positivas do módulo da impedância de carga $\Delta Z_L^{k+1} > 0$ predominarem sobre as variações negativas do módulo da corrente de carga $\Delta I_L^{k+1} < 0$ e de tal forma que: $[I_L^k.\Delta Z_L^{k+1}] > \left[[Z_L^k.\Delta I_L^{k+1} + \Delta Z_L^{k+1}.\Delta I_L^{k+1}] \right]$.

Então, no ponto k+1, $V_L^{k+1} = V_L^k + \Delta V_L^{k+1} = +0,7969$ pu, o que confere com o valor mostrado na Tabela 2.3. Portanto, a tensão aumenta quando chavea-se um capacitor.

b) Ponto de operação na parte inferior da curva

Considerando os valores para P_L^k =+0,9 pu da Tabela 2.3:

$$\Delta V_{L}^{k+1} = \begin{bmatrix} Z_{L}^{k} \Delta I_{L}^{k+1} \end{bmatrix} + \begin{bmatrix} I_{L}^{k} \Delta Z_{L}^{k+1} + \Delta Z_{L}^{k+1} \Delta I_{L}^{k+1} \end{bmatrix} = -0,02305 \text{ pu}$$

A redução da tensão ($\Delta V_L^{k+1} < 0$) acontece enquanto o efeito de variações negativas do módulo da impedância de carga $\Delta Z_L^{k+1} < 0$ predominarem sobre as variações positivas do módulo da corrente de carga $\Delta I_L^{k+1} > 0$ e de tal forma que: $[Z_L^k.\Delta I_L^{k+1}] < |[I_L^k.\Delta Z_L^{k+1} + \Delta Z_L^{k+1}.\Delta I_L^{k+1}]|$.

Então, no ponto k+1, $V_L^{k+1} = V_L^k + \Delta V_L^{k+1} = +0,3316$ pu, o que confere com o valor mostrado na Tabela 2.3. Portanto, a tensão diminui quando chavea-se um capacitor.

Mostrou-se analítica, gráfica e numericamente que a tensão pode aumentar ou diminuir quando chavea-se um capacitor.

2.7

Índices de Avaliação das Condições de Segurança de Tensão

O objetivo é identificar se a solução de tensão para uma carga conectada à barra i está na parte superior, na inferior e a distância à "ponta do nariz" da curva PV, QV. A "ponta do nariz" corresponde à máxima quantidade de potência ativa e reativa que pode ser transmitida à carga ou a partir de um gerador. O carregamento da rede de transmissão é representado por condições nodais associadas ao máximo fluxo de potência ativa e reativa que pode ser transmitida dos geradores para as cargas. Desenvolve-se uma ferramenta analítica de avaliação dessas condições nodais com base em modelo matemático simples, mas poderoso, de uma interpretação física direta do fenômeno. Índices abrangentes e significativos de avaliação são deduzidos [Prada R.B., Palomino E.G.C., dos Santos J.O.R., Bianco A., Pilotto L.A.S., 2002].

O sistema linearizado das equações estáticas de fluxo de carga é:

$$\begin{bmatrix} \Delta \mathsf{P} \\ \Delta \mathsf{Q} \end{bmatrix} = \begin{bmatrix} \mathsf{J} \end{bmatrix} \begin{bmatrix} \Delta \theta \\ \Delta \mathsf{V} \end{bmatrix}$$
(2.58)

Colocando as equações e variáveis relacionadas com a barra em análise para baixo, fica:

$$\begin{bmatrix} \Delta P' \\ \Delta Q' \\ \vdots \\ \Delta P_i \\ \Delta Q_i \end{bmatrix} = \begin{bmatrix} A & B \\ \vdots & D \\ C & D \\ \vdots & D \\ \Delta \theta_i \\ \Delta V_i \end{bmatrix}$$
(2.59)

As sub-matrizes A, B, C e D são as partições da matriz Jacobiano [J], onde:

A - representa a matriz Jacobiana original do sistema, excluindo as linhas e colunas referentes à barra em análise.

B - representa as derivadas das equações de potência ativa e reativa do sistema em relação às variáveis dependentes da barra em estudo.

C - representa as derivadas das equações de potência ativa e reativa da barra em análise em relação às outras variáveis dependentes do sistema.

D - representa as derivadas das equações de potência ativa e reativa da barra em análise em relação às suas próprias variáveis dependentes.

É assumida uma variação infinitesimal de carga ou geração $\nabla P_i \in \nabla Q_i$ somente para a barra i de um sistema multi-nó, isto equivale a $\nabla P' = \nabla Q' = 0$. As relações de sensibilidade entre as injeções de potência ativa e reativa e a magnitude e o ângulo da tensão na barra i, levando em consideração o restante do sistema pode ser avaliadas por:

$$\begin{bmatrix} \Delta \mathsf{P}_i \\ \Delta \mathsf{Q}_i \end{bmatrix} = \left[\mathsf{D}'\right] \begin{bmatrix} \Delta \theta_i \\ \Delta \mathsf{V}_i \end{bmatrix}$$
(2.60)

$$[D'] = [D] - [C] \cdot [A^{-1}] \cdot [B]$$
(2.61)

D' - relaciona P_i, Q_i, com θ_i e V_i, levando em consideração o restante do sistema. Tem dimensão 2x2. No sistema multi-nó: D' \neq D \neq J

É demonstrado que o sinal do determinante e a magnitude da matriz [D'] indicam respectivamente, a região de operação e a distância ao máximo carregamento.

2.7.1

Magnitude do Determinante da Matriz [D']

2.7.1.1

Sistema Duas Barras

Em um sistema de duas barras o fluxo de potência que chega na barra i é igual à carga consumida. Considerando k como uma barra de geração o determinante da matriz [D'] é calculado por:

$$det[D'] = \frac{\partial P_i}{\partial \theta_i} * \frac{\partial Q_i}{\partial V_i} - \frac{\partial P_i}{\partial V_i} * \frac{\partial Q_i}{\partial \theta_i}$$
(2.62)

onde:

$$P_{i} = V_{i}^{2}G_{ii} + V_{i}V_{k}(G_{ik}\cos\theta_{ik} + B_{ik}\sin\theta_{ik})$$
(2.63)

$$Q_{i} = -V_{i}^{2}B_{ii} + V_{i}V_{k}(G_{ik} \operatorname{sen}\theta_{ik} - B_{ik} \cos\theta_{ik})$$
(2.64)

Resolvendo (2.63) e (2.54) em (2.62), obtém-se:

$$det[D'] = -V_i V_k^2 (G_{ik}^2 + B_{ik}^2) + 2V_i^2 B_{ii} (V_k G_{ik} \sin \theta_{ik} - V_k B_{ik} \cos \theta_{ik}) -2V_i^2 G_{ii} (V_k G_{ik} \cos \theta_{ik} + V_k B_{ik} \sin \theta_{ik})$$
(2.65)

Fazendo $Y_{ik}^2 = (G_{ik}^2 + B_{ik}^2)$ e multiplicando ambos os lados de (2.65) por V_i :

$$det[D']V_{i} = -[V_{i}V_{k}Y_{ik}]^{2} + 2V_{i}^{2}B_{ii}[V_{i}V_{k}(G_{ik}\sin\theta_{ik} - B_{ik}\cos\theta_{ik})] - 2V_{i}^{2}G_{ii}[V_{i}V_{k}(G_{ik}\cos\theta_{ik} + B_{ik}\sin\theta_{ik})]$$
(2.66)

Por outro lado, a potência aparente injetada na barra i é dada por $S_i = P_i + jQ_i$. De (2.63) e (2.64):

$$S_{i}^{2} = P_{i}^{2} + Q_{i}^{2} = V_{i}^{4} \cdot (G_{ii}^{2} + B_{ii}^{2}) + V_{i}^{2} \cdot V_{k}^{2} \cdot Y_{ik}^{2} + 2V_{i}^{2} G_{ii} V_{i} V_{k} (G_{ik} \cos \theta_{ik} + B_{ik} \sin \theta_{ik}) - 2V_{i}^{2} B_{ii} V_{i} V_{k} (G_{ik} \sin \theta_{ik} - B_{ik} \cos \theta_{ik})$$
(2.67)

Fazendo $S_{io} = V_i^2 \cdot Y_{ii}$ e comparando (2.66) e (2.67) obtém-se finalmente:

$$\det[D']V_i = S_{io}^2 - S_i^2$$
(2.68)

O resultado obtido é muito importante para o estudo do carregamento da rede. O termo S_{io}^2 é função do elemento diagonal da matriz admitância de barra e do módulo da tensão na barra i. Supondo a tensão constante na barra i e aumentando gradualmente o valor da potência injetada S_i , o máximo será alcançado quando S_i^2 for igual a S_{io}^2 fazendo com que o produto det[D']V_i seja igual a zero.

Dessa forma, pode-se dizer que para um sistema de duas barras:

- S_i é a potência injetada na barra i no ponto de operação em análise.
- S_{io} é a máxima potência que pode ser injetada na barra i (dado por S_{io} = V_i².Y_{ii}).
- det[D'] $V_i\,$ é o indicador da distância de $\,S_i^2\,$ a $\,S_{io}^2$.

2.7.1.2 Sistema Multi-Nó

Um importante resultado obtido para um sistema de duas barras agora é estendido ao sistema multi-nó. Seja [D] a matriz que relaciona linearmente as injeções de potência ativa e reativa ao ângulo e módulo da tensão na barra i:

$$\begin{bmatrix} D \end{bmatrix} = \begin{bmatrix} \frac{\partial P_i}{\partial \theta_i} & \frac{\partial P_i}{\partial V_i} \\ \frac{\partial Q_i}{\partial \theta_i} & \frac{\partial Q_i}{\partial V_j} \end{bmatrix} = \begin{bmatrix} x & z \\ y & u \end{bmatrix}$$
(2.69)

seja:

$$\begin{bmatrix} -C.A^{-1}.B \end{bmatrix} = \begin{bmatrix} b_1 & b_3 \\ b_2 & b_4 \end{bmatrix}$$
(2.70)

Usando (2.69) e (2.70) em (2.61):

$$det[D'] = det\begin{bmatrix} x & z \\ y & u \end{bmatrix} + \begin{pmatrix} b_1 & b_3 \\ b_2 & b_4 \end{bmatrix}$$
(2.71)

$$det[D'] = [x.u - y.z] + [x.b_4 - yb_3] + [b_1.u - b_2.z] + [b_1.b_4 - b_2.b_3]$$
(2.72)

De (2.69) tem-se:

$$det[D] = [x.u - y.z]$$
 (2.73)

Substituindo (2.73) em (2.72):

$$det[D'] = det[D] + [x.b_4 - yb_3] + [b_1.u - b_2.z] + [b_1.b_4 - b_2.b_3]$$
(2.74)

O resultado obtido para um sistema de duas barras, onde $[D'] \equiv [D]$, aqui repetido para comodidade, $det[D]V_i = S_{io}^2 - S_i^2$ pode ser estendido. Multiplicando-se ambos os lados de (2.74) por V_i, fica na forma:

$$det[D']V_{i} = det[D]V_{i} - S_{is}^{2}$$
(2.75)

onde:

$$S_{is}^{2} = -V_{i} \{ [xb_{4} - yb_{3}] + [b_{1}u - b_{2}z] + [b_{1}b_{4} - b_{2}b_{3}] \}$$
(2.76)

ou

$$det[D']V_i = S_{io}^2 - S_i^2 - S_{is}^2$$
(2.77)

O novo termo S_{is}^2 pode ser obtido de (2.75):

$$S_{is}^{2} = (det[D] - det[D']).V_{i}$$
 (2.78)

Dessa forma, pode-se dizer que para um sistema multi-nó:

- S_i é a potência injetada na barra i no ponto de operação em análise.
- S_{i0} é a máxima potência que poderia ser injetada para a barra i, caso o sistema fosse de duas barras (dado por $S_{io} = V_i^2 \cdot Y_{ii}$).
- S²_{is} está relacionada à potência injetada no restante do sistema que limita a injeção de potência na barra i (dado por S²_{is} = (det[D] – det[D']).V_i).
- S²_m = S²_{io} S²_{is} é definida como a máxima potência que poderia ser injetada na barra i.

2.7.2

Sinal do Determinante da Matriz [D']

Os vetores gradiente de potência ativa e reativa podem ser escritos como:

$$\dot{\nabla}\mathsf{P} = \frac{\partial\mathsf{P}_{i}}{\partial\theta_{i}}\cdot\vec{i} + \frac{\partial\mathsf{P}_{i}}{\partial\mathsf{V}_{i}}\cdot\vec{j} + 0\cdot\vec{k} \quad e \quad \dot{\nabla}\mathsf{Q} = \frac{\partial\mathsf{Q}_{i}}{\partial\theta_{i}}\cdot\vec{i} + \frac{\partial\mathsf{Q}_{i}}{\partial\mathsf{V}_{i}}\cdot\vec{j} + 0\cdot\vec{k} \tag{2.79}$$

onde \vec{i} , \vec{j} e \vec{k} são vetores de uma base ortonormal.

O produto vetorial é:

$$\dot{\nabla} \mathbf{P} \times \dot{\nabla} \mathbf{Q} = \left[\left(\frac{\partial \mathbf{P}_{i}}{\partial \theta_{i}} \cdot \frac{\partial \mathbf{Q}_{i}}{\partial V_{i}} \right) - \left(\frac{\partial \mathbf{P}_{i}}{\partial V_{i}} \cdot \frac{\partial \mathbf{Q}_{i}}{\partial \theta_{i}} \right) \right] \cdot \vec{\mathbf{k}}$$
(2.80)

Substituindo (2.62) em (2.80):

$$\dot{\nabla} P \times \dot{\nabla} Q = det[D']$$
 (2.81)

como:

$$\dot{\nabla} \mathbf{P} \times \dot{\nabla} \mathbf{Q} = \left| \dot{\nabla} \mathbf{P} \right| \cdot \left| \dot{\nabla} \mathbf{Q} \right| \cdot \operatorname{sen}(\beta)$$
 (2.82)

Onde β é o ângulo entre $\dot{\nabla}$ P e $\dot{\nabla}$ Q. Também:

$$det[D'] = \left| \dot{\nabla} P \right| \cdot \left| \dot{\nabla} Q \right| \cdot sen(\beta)$$
(2.83)

Como o sinal de det[D'] é função somente de β , tem-se:

det[D'] > 0 se sen(
$$\beta$$
) > 0, \rightarrow 0° < β < 180°
det[D'] < 0 se sen(β) < 0, \rightarrow 0° > β > -180°
det[D'] = 0 se sen(β) = 0, \rightarrow β = ±180°, β = 0°

Observa-se na Figura 2.11 que, tomando $\dot{\nabla}P_i$ como eixo de referência, na região superior da curva PV, QV sempre ocorre $0^0 < \beta < 180^0$ e na região inferior da mesma curva sempre ocorre $0^0 > \beta > -180^0$. No ponto máximo, os vetores gradientes $\dot{\nabla}P_i$ e $\dot{\nabla}Q_i$ estão alinhados, e então o ângulo β formado por esses dois vetores é ±180° e também $\beta = 0^0$ devido à ocorrência numérica.

Portanto, det[D'] > 0 caracteriza a parte superior da curva PV, QV e det[D'] < 0 caracteriza a parte inferior da mesma curva, enquanto que det[D']=0 caracteriza a fronteira entre essas duas regiões, isto é, a "ponta do nariz".

É fácil perceber que o ângulo β pode complementar a avaliação do carregamento da rede, indicando a região de operação e a distância angular até o máximo.

Figura 2.11 – Localização do vetor gradiente de Pi e Qi no plano VO

2.7.3 Margem de Potência

O valor ($S_m - S_i$) é a diferença de potência em MVA entre a potência que está sendo injetada e a máxima potência estimada para o ponto de operação em análise. O problema de interpretação do tamanho do índice é resolvido usandose $S_i \in S_m$. A margem é grande ou pequena? Pode ser grande em uma barra e pequena para outra. Por exemplo, se $S_m=10 \in S_i=1$, então, então a margem é 9 vezes o que está sendo injetado. Se, por outro lado, $S_i = 99 \in S_m = 100$, então a margem é aproximadamente 0,01 do que está sendo injetado.

Na região superior da curva PV, QV da Figura 2.12, a margem de potência $(S_m - S_i)$ é um valor positivo e deve ser lido como a quantidade em MVA que poderia ser "adicionada" a S_i para atingir a estimativa do máximo S_m . Pode-se definir uma margem em pu ou em percentual. Esta margem será igual à unidade quando a potência injetada na barra i é nula (S_i =0), e tende a zero à medida que a injeção tende ao valor máximo (S_i = S_m). Esta margem é definida como:

$$M = \left(\frac{S_m - S_i}{S_m}\right) = \left(1 - \frac{S_i}{S_m}\right) \text{ em pu de Sm, ou}$$
(2.84)

$$M = \left(\frac{S_m - S_i}{S_m}\right) = \left(1 - \frac{S_i}{S_m}\right) \times 100 \text{ \% em percentual de Sm}$$
(2.85)

Na região inferior da curva PV, QV da Figura 2.12, a margem de potência $(S_m - S_i)$ é um valor negativo e deve ser lido como a quantidade em MVA que deveria ser "retirada" de S_i para atingir a estimativa do máximo S_m . Pode-se definir uma margem em pu ou em percentual. Esta margem será igual a zero quando a injeção na barra i é máxima ($S_i = S_m$) e tende a -1 quando S_m tende a zero. Esta margem é definida como:

$$M = \left(\frac{S_m - S_i}{S_i}\right) = \left(\frac{S_m}{S_i} - 1\right) \text{ em pu de Si, ou}$$
(2.86)

$$M = \left(\frac{S_m - S_i}{S_i}\right) = \left(\frac{S_m}{S_i} - 1\right) x \ 100 \ \% \ \text{em percentual de Si}$$
(2.87)

No ponto de operação correspondente ao máximo carregamento, $(S_m - S_i)$ é nulo e, portanto, não há nada a adicionar ou retirar de S_i para atingir S_m.

Figura 2.12 – Sinal da margem na curva SV

Em sistemas multi-nó pode acontecer que na região inferior da curva PV, QV, além da margem ser negativa, esta estiver abaixo de -100 % em alguns casos (quando S_m <0 isto implica que M<-100 %), [França, R.F., dos Santos,

J.O.R., Prada, R.B., Ferreira, L.C.A., Bianco, A., 2003]. De acordo com a definição, S_m^2 é negativo se $S_{io}^2 < \Delta \det V_i$ e isso pode acontecer em virtude de:

- Se o termo $S_{io}^2 = V_i^4 \cdot Y_{ii}^2$ for pequeno, significa que o módulo da tensão ou o elemento diagonal da matriz admitância da barra são pequenos.
- Se o termo ∆det.V_i = (det[D] det[D']).V_i for grande, significa principalmente que det[D'].V_i < 0.

2.8

Relação entre Grandezas Controladas e Controladoras

A matriz [D'] de dimensão (2x2) relaciona (linearmente) as potências ativa e reativa injetadas com o ângulo e o módulo da tensão na barra i. Na parte superior da curva PV, QV um incremento (infinitesimal) de carga implica em diminuição do ângulo da tensão e diminuição do módulo da tensão. Isso é normal: um aumento de carga implica em aumento da defasagem angular entre a barra i e uma barra de referência, assim como implica em um aumento da queda de tensão entre a barra i e uma barra de tensão controlada. Entretanto, na parte inferior da curva, um incremento de carga implica em diminuição do ângulo da tensão e em um acréscimo no valor do módulo da tensão.

Quando a barra i tem a ela conectada um compensador de potência reativa somente, e portanto não há variações de potência ativa, a matriz [D'] agora com dimensão (1x1), relaciona a potência reativa injetada com o módulo da tensão na barra i. Na parte superior da curva VQ um incremento da potência reativa gerada implica em acréscimo do módulo da tensão. Na parte inferior da curva, há um decréscimo do módulo da tensão. Embora a primeira situação seja normal (Qg e V crescem), ela não garante que o controle de tensão funcione de forma adequada nesta barra. Da mesma forma, embora a segunda situação não seja normal (Qg cresce e V decresce), ela não garante que o controle de tensão funcione de tensão seja normal (Qg cresce e V decresce), ela não garante que o controle de tensão funcione de tensão seja normal (Qg cresce e V decresce), ela não garante que o controle de tensão funcione de tensão seja normal (Qg cresce e V decresce), ela não garante que o controle de tensão funcione de tensão funcione de forma inversa.

Índices de Adequação das Ações de Controle de Tensão

Foi mostrado em [Seelig, 2004] que o controle de tensão feito por geradores, compensadores síncronos, LTC's, SVC's, capacitores e reatores pode levar o sistema ao colapso caso o sistema esteja operando na parte inferior da curva PV. Diante disto, foi desenvolvida uma ferramenta computacional capaz de relacionar as grandezas usadas para o controle de tensão com a tensão controlada, ou seja, capaz de determinar a adequação da ação de controle.

2.9.1

Representação dos Controles e Cálculo dos Índices

Nos programas de fluxo de carga o controle de tensão nos terminais do gerador é feito fixando-se o valor desejado de tensão e calculando-se a potência reativa gerada necessária. A tensão de excitação não aparece no problema e, portanto, a eficácia do controle de tensão não pode ser aferida com um programa de fluxo de carga. No máximo, pode-se estudar a relação entre as variações da potência reativa gerada e as de tensão.

Em [Prada, 2001] foram criados índices que verificam a adequação de ações de controle de tensão. Estes índices relacionam a grandeza física efetivamente usada para controlar a tensão e a tensão a ser controlada. Nesta seção será mostrado o cálculo do índice "tensão interna X tensão terminal para controle local de tensão" para um gerador ou compensador síncrono.

O objetivo aqui é compreender a relação entre tensão terminal do gerador ou compensador síncrono e tensão interna de excitação e os efeitos da variação destas tensões sobre a tensão na barra de carga.

Se o gerador for modelado por tensão constante atrás da reatância síncrona, como é adequado em estudos de regime permanente, cria-se um nó fictício e o gerador passa a ter duas barras como mostrado na Figura 2.13. A barra Eg é a barra interna do gerador atrás de uma reatância, a barra V0 é a barra terminal do gerador cujo módulo da tensão é inicialmente igual a 1,00 pu e a barra V1 é a barra de carga.

Figura 2.13 - Diagrama unifilar do sistema-teste de 3 barras

O sistema-teste de 3 barras, cujo diagrama unifilar é apresentado na Figura 2.13, será utilizado para efeito de ilustração.

O sistema linearizado das equações de fluxo de carga do sistema em análise é mostrado em (2.88), onde a variável V₀ é considerada através da equação (2.89), enquanto existir o controle do módulo da tensão na barra V₀.

$$\begin{bmatrix} \Delta P_{0} \\ \Delta P_{1} \\ \Delta P_{1} \end{bmatrix} \begin{bmatrix} \frac{\partial P_{0}}{\partial \theta_{0}} & \frac{\partial P_{0}}{\partial \theta_{1}} & \frac{\partial P_{0}}{\partial V_{0}} & \frac{\partial P_{0}}{\partial V_{1}} & \frac{\partial P_{0}}{\partial Eg} \\ \frac{\partial P_{1}}{\partial \theta_{0}} & \frac{\partial P_{1}}{\partial \theta_{1}} & \frac{\partial P_{1}}{\partial V_{0}} & \frac{\partial P_{1}}{\partial V_{1}} & \frac{\partial P_{1}}{\partial Eg} \\ \Delta Q_{0} \end{bmatrix} = \begin{bmatrix} \frac{\partial Q_{0}}{\partial \theta_{0}} & \frac{\partial Q_{0}}{\partial \theta_{1}} & \frac{\partial Q_{0}}{\partial V_{0}} & \frac{\partial Q_{0}}{\partial V_{1}} & \frac{\partial Q_{0}}{\partial Eg} \\ \frac{\partial Q_{1}}{\partial \theta_{0}} & \frac{\partial Q_{1}}{\partial \theta_{1}} & \frac{\partial Q_{1}}{\partial V_{0}} & \frac{\partial Q_{1}}{\partial V_{1}} & \frac{\partial Q_{1}}{\partial Eg} \\ \frac{\partial Q_{1}}{\partial \Psi_{0}} & \frac{\partial Q_{1}}{\partial \Theta_{1}} & \frac{\partial Q_{1}}{\partial V_{0}} & \frac{\partial Q_{1}}{\partial V_{1}} & \frac{\partial Q_{1}}{\partial Eg} \\ \frac{\Delta V_{0}}{\Delta V_{0}} \end{bmatrix} \begin{bmatrix} \Delta V_{0} \\ \Delta V_{0} \end{bmatrix}$$

$$(2.88)$$

 $\Delta V_0 = V_0^{esp} - V_0^{calc}$ (2.89)

Considerando-se $\Delta P_0 = \Delta P_1 = \Delta Q_0 = \Delta Q_1 = 0$, já que se deseja verificar as variações ΔV_0 e ΔEg , e colocando-se ΔV_0 para baixo, conforme mostrado em (2.90), o sistema (2.88) pode ser reduzido para dimensão (1x1) (2.91), usando-se (2.92). A matriz reduzida [D'] obtida é mostrada em (2.93).

$$\left[\mathsf{D}'\right] = \left\lfloor \left(\frac{\partial \mathsf{V}_0}{\partial \mathsf{E}\mathsf{g}}\right) \right\rfloor \tag{2.93}$$

A matriz [D'] resultante desta redução é o índice que relaciona a tensão da barra terminal do gerador com sua tensão interna, conforme (2.91).

[D'] > 0, indica que o ponto de operação está na região normal, parte superior da curva PV.

[D'] < 0, indica que o ponto de operação está na região anormal, parte inferior da curva PV.