

Cláudio Vinicius Pereira de Araujo

Aplicação do Método de Elementos Finitos na Análise de Estruturas Coaxiais: Estudo Comparativo entre Funções Base Polinomiais de Diversas Ordens

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Elétrica da PUC-Rio.

Orientador: José Ricardo Bergmann

Rio de Janeiro

Novembro de 2007

Cláudio Vinicius Pereira de Araujo

Aplicação do Método de Elementos Finitos na Análise de Estruturas Coaxiais: Estudo Comparativo entre Funções Base Polinomiais de Diversas Ordens

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Engenharia Elétrica da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

José Ricardo Bergmann

Orientador Centro de Estudos em Telecomunicações - PUC-Rio

Luis Costa da Silva Centro de Estudos em Telecomunicações - PUC-Rio

Flávio José Vieira Hasselmann

Centro de Estudos em Telecomunicações - PUC-Rio

Fernando José da Silva Moreira

UFMG-MG

José Eugênio Leal

Coordenador(a) Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 05 de novembro de 2007

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Cláudio Vinicius Pereira de Araujo

Graduou-se em Engenharia Elétrica, em setembro de 2001, na Universidade do Estado do Rio de Janeiro. Em agosto de 2005, iniciou no Centro de Estudos em Telecomunicações da Pontificia Universidade Católica do Rio de Janeiro seu mestrado na área de eletromagnetismo aplicado.

Ficha Catalográfica

Pereira de Araujo, Cláudio Vinicius

Aplicação do Método dos Elementos Finitos na análise de estruturas coaxiais: Estudo comparativo entre funções base polinomiais de diversas ordens / Cláudio Vinicius Pereira de Araujo; orientador: José Ricardo Bergmann. Rio de Janeiro: PUC, Departamento de Engenharia Elétrica, 2007.

140p.il.30cm

Dissertação (Mestrado) - Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Elétrica.

Incluí referências bibliográficas.

1.Engenharia elétrica - Teses. 2. Guias de onda coaxiais. 3. Método dos elementos finitos 4. Descontinuidades em Guias de Onda Coaxiais 5. Técnicas de Inspeção de Dutos para a Indústria de Petróleo I. Bergmann, José Ricardo. II. Departamento de Engenharia Elétrica. III. Título. PUC-Rio - Certificação Digital Nº 0521315/CA

À Deus pela vida, à família e aos amigos.

Agradecimentos

Ao meu orientador Professor José Ricardo Bergmann pelo incentivo e apoio para a realização deste trabalho.

Ao CNPq, à Pipeway e à PUC - Rio, pelos auxílios concedidos, sem os quais esta dissertação não poderia ter sido realizada.

À Banca Avaliadora por ter analisado este trabalho.

Aos meus pais, pela formação educacional.

À minha amada esposa, pelo incentivo, paciência e carinho.

Aos amigos e familiares que incentivaram e ajudaram durante a elaboração desta dissertação.

Resumo

Pereira de Araujo, Cláudio Vinicius. Bergmann, José Ricardo. Aplicação do Método dos Elementos Finitos na Análise de Estruturas Coaxiais: Estudo Comparativo entre Funções Base Polinomiais de Diversas Ordens. Rio de Janeiro, 2007. 140p. Dissertação de Mestrado - Departamento de Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

Neste trabalho, o Método dos Elementos Finitos é aplicado na análise eletromagnética de estruturas coaxiais circularmente simétricas excitadas pelo modo TEM. A representação do campo magnético é feita através da associação de funções base polinomiais de diferentes ordens a grades que possuem elementos triangulares ou retangulares. Este trabalho apresenta um estudo comparativo entre as diversas possibilidades de associações função base e elemento, considerando o tempo de processamento computacional e a precisão exigida na simulação. A técnica é aplicada na análise de dispositivos de acoplamento entre diferentes guias coaxiais usualmente empregados em antenas de banda larga. Para validar os resultados do algoritmo, os resultados obtidos nas diversas etapas são comparados com aqueles obtidos via Método de Casamento de Modos. Além disto, a técnica é empregada para avaliar a possibilidade de utilização de dispositivos de inspeção de tubulação que utiliza uma onda TEM de alta freqüência. A onda TEM é excitada no interior da tubulação de forma que variações em suas paredes, nas condições de contorno dos campos, produzam alterações nas características de propagação, que serão detectadas e associadas às anomalias de suas paredes internas. Estes dispositivos de inspeção são empregados na indústria de petróleo e gás.

Palavras-chave

Descontinuidades em Guias de Onda Coaxiais; Método dos elementos finitos; Técnicas de Inspeção de Dutos para a Indústria de Petróleo; Acopladores

Abstract

Pereira de Araujo, Cláudio Vinicius. Bergmann, José Ricardo. Aplication of Finite Element Method in the Analysis of Coaxial Structures: A Comparative Study among Polynomial Basis Functions. Rio de Janeiro, 2007. 140p. Dissertação de Mestrado - Departamento de Engenharia Elétrica, Pontificia Universidade Católica do Rio de Janeiro.

In this work, the Method of Finite Element is applied in the electromagnetic analysis of circularly symmetrical coaxial structures excited by TEM mode. The representation of the magnetic field is made through the association of polynomial basis functions of different orders associated in the grids made of triangular or rectangular elements. This work presents a comparative study between different possibilities of association between basis functions and element, considering the computational time and the accuracy yielded by the simulation. The technique is applied in the electromagnetic analysis of coupling devices used to connect different coaxial waveguides operating at microwave frequencies. To validate the algorithm developed in this work, the MEF results are compared with those obtained by employing Method of Mode Matching (MMM). Moreover, the technique is also employed to evaluate the possibility of use of TEM wave highfrequency for inspection of metallic pipelines. The TEM wave is excited inside cylindrical metallic pipes and anomalies in the metallic walls are associated to the changes in the propagation characteristics. These inspection devices are intensively used in the industry of oil and gas.

Keywords

Coaxial waveguide discontinuities; Method of Finite Element; Technique of Tubing Inspection for the Petroleum Industry; Couplers

Sumário

1 Introdução	17
2 Formulação	21
2.1. Introdução	21
2.2. Sistema de Coordenadas e Geometria	21
2.3. Equações de Maxwell	23
2.4. Campos sobre as portas	25
2.5. Aplicando o Método de Galerkin	27
2.6. Corrente Magnética na Porta de Entrada	30
3 Aplicação do Método de Elementos Finitos	32
3.1. Introdução	32
3.2. Funções Base e Funções Teste	34
3.3. Mapeamento Isoparamétrico e Degenerativo	36
3.3.1. Mapeamento de Elementos Triangulares	39
3.3.2. Mapeamento de Elementos Retangulares	40
3.3.2.1. Retângulos com Equações Lineares	41
3.3.2.2. Retângulos com Equações Quadráticas	42
3.3.2.3. Retângulos com Equações Cúbicas	44
3.4. Polinômios de Lagrange	45
3.4.1. Caso Bidimensional para Elementos Triangulares	47
3.4.2. Caso Bidimensional para Elementos Retangulares	48
3.4.2.1. Equações Base Lineares para Elementos Retangulares	49
3.4.2.2. Equações Base Quadráticas para Elementos Retangulares	50
3.4.2.3. Funções Base Cúbicas para Elementos Retangulares	52

3.5. Calculo das Integrais	56
3.5.1. Integrais para os Elementos Triangulares	56
3.5.2. Integrais para os Elementos Retangulares	61
3.5.2.1. Elementos Retangulares com Funções Base Lineares	61
3.5.2.2. Elementos Retangulares com Funções Base Quadráticas	63
3.5.2.3. Elementos Retangulares com Funções Base Cúbicas	67
3.6. Montagem e Solução de Sistemas Lineares	71
3.7. Perda de Retorno e Balanço de Energia	75
4 Avaliação de Desempenho	80
4.1. Introdução	80
4.2. Caso 1 – Guia Coaxial	80
4.3. Caso 2 – Guia Coaxial com Corrugação	92
4.4. Caso 3 – Guia Coaxial com Anel Dielétrico	100
4.5. Análise de Desempenho de Conectores de Banda Larga	104
4.6. Fonte de Corrente Magnética	111
5 Aplicação	115
5.1. Introdução	115
5.2. Geometria do Problema	117
5.3. Diferença de Potencial nos Terminais	117
5.4. Análise Eletromagnética do Dispositivo de Inspeção	118
6 Conclusão	134
7 Trabalhos Futuros	136
8 Apêndice	137
9 Referências	139

Lista de Figuras

Figura 1.1 – Guia Coaxial	17
Figura 1.2 – Pig Idealizado	20
Figura 2.1 - Sistemas de Coordenadas Retangulares e Cilíndricas	21
Figura 2.2 - Geometria do Problema	22
Figura 2.3 – Decompondo o Campo Magnético	25
Figura 3.1 – Elementos utilizados e suas funções interpoladoras	33
Figura 3.2 - Função Interpoladora Nj.	35
Figura 3.3 - Mapeamento Degenerativo X Isoparamétrico.	36
Figura 3.4 - Mapeamento Isoparamétrico Quadrático para Retângulos	43
Figura 3.5 - Mapeamento Isoparamétrico Cúbico para Retângulos	44
Figura 3.6 - Elemento unidimensional com Três Nós	46
Figura 3.7 - Funções Forma Unidimensionais	46
Figura 3.8 - Elemento Unidimensional com Quatro Nós	52
Figura 3.9 – Triangulo de Pascal para um Monômio Completo de Grau	58
P [7].	
Figura 3.10 – Domínio dividido em elementos triangulares.	71
Figura 3.11 – Ampliação dos elementos da porta de entrada.	72
Figura 3.12 – Exemplo de montagem para a matriz global 'A'.	73
Figura 3.13 – Exemplo de montagem para o vetor global 'B'.	74
Figura 4.1 – Guia Coaxial Liso	80
Figura 4.2 - Número de Elementos em uma Grade 7RO-7Z	82
Figura 4.3 – Simulação com Elementos Triangulares e Funções Base	82
Lineares – Grade 19RO-43Z.	

Figura 4.4 - Simulação do modulo do campo magnético em ROF, para diferentes elementos e funções base em 3 GHz e Grade 19RO-43Z.	83
Figura 4.5 - Ampliação do modulo do campo magnético para as funções quadráticas e cúbicas em ROF para 3 GHz e Grade 19RO-43Z.	84
Figura 4.6 – Desempenho dos Algoritmos para Diferentes Freqüências em Grade 19RO-43Z	85
Figura 4.7– Desempenho dos Algoritmos para Diferentes Freqüências em Grade 19RO-61Z	85
Figura 4.8 – Desempenho dos Algoritmos para Diferentes Freqüências em Grade 43RO-43Z	86
Figura 4.9 – Desempenho dos Algoritmos para Diferentes Freqüências em Grade 43RO-61Z	86
Figura 4.10– Desempenho dos Algoritmos para Diferentes Freqüências em Grade 61RO-61Z	88
Figura 4.11– Desempenho do Algoritmo Linear Triangular em Diferentes Malhas.	88
Figura 4.12– Desempenho do Algoritmo Linear Retangular em Diferentes Malhas	89
Figura 4.13 – Desempenho do Algoritmo Quadrático em Diferentes Malhas	89
Figura 4.14 - Desempenho do Algoritmo Cúbico em Diferentes Malhas	89
Figura 4.15 - Vista em Corte do Guia Coaxial com Corrugamento de 3 x 10 mm	92
Figura 4.16 – Comparação entre o MEF (RET CUB) e o MCM	94
Figura 4.17 - Comparação entre os diferentes Algoritmos para a grade da Tabela 4.6	95
Figura 4.18 - Vista em Corte do Guia Coaxial com Corrugamento de 1 x 10 mm	95
Figura 4.19 – Comparação entre o MEF (RET CUB) e o MCM	97

Figura 4.20 – Comparação entre os diversos Algoritmos MEF para a grade da Tabela 4.7	97
Figura 4.21 - Vista em Corte do Guia Coaxial com Corrugamento de 1 x 1 mm	98
Figura 4.22- Comparação entre o MEF (RET CUB) e o MCM	99
Figura 4.23 – Comparação entre os diversos Algoritmos MEF para a grade da Tabela 4.9	100
Figura 4.24 – Vista em Corte do Guia Coaxial com Anel Dielétrico de 5,6 mm	101
Figura 4.25 - Comparação entre o MEF (RET CUB) e o MCM – Caso 3	101
Figura 4.26 – Comparação entre os diversos Algoritmos – Caso 3 – Grade da Tabela 4.10	102
Figura 4.27 - Comparação entre diferentes grades – Caso 3 – Grade da Tabela 4.11	103
Figura 4.28 – Conector de 50 Ω	104
Figura 4.29 – Perda de Retorno para a Estrutura da Figura 4.28	105
Figura 4.30 – Conector de 50 Ω com Espaçamento	106
Figura 4.31 – Perda de Retorno para a Estrutura da Figura 4.30	107
Figura 4.32 – Comparando Algoritmos para a Estrutura da Figura 4.30 – Grade da Tabela 4.15	107
Figura 4.33 – Conector de 50 Ω com dois Espaçamentos	108
Figura 4.34 – Perda de Retorno para a Estrutura da Figura 4.33	109
Figura 4.35 – Comparando Algoritmos para a Estrutura da Figura 4.33 – Grade da Tabela 4.17	109
Figura 4.36 – Resultados da Otimização da Estrutura Figura 4.33	110
Figura 4.37 – Perda de Retorno da Estrutura Otimizada X Estrutura Inicial	111
Figura 4.38 – Corte do Guia Coaxial com Fonte de Corrente Magnética	112

Figura 4.39 – Campo magnético sobre a parede externa	112
Figura 4.40 – Comparação entre as formulações – 3 GHz	113
Figura 4.41 - Comparação entre as formulações - 3GHz	114
Figura 5.1 – Dispositivo de Inspeção Idealizado.	116
Figura 5.2 – Seção a ser Considerada para Análise.	117
Figura 5.3– Dispositivo sem Suportes de Apoio.	119
Figura 5.4 – Guia Coaxial Liso sem Suporte em ρ = 18,6267 cm e F = 2,5 GHz.	120
Figura 5.6 – Dados Simulados para ρ = 18,6267 cm, H = 1 cm, C = 2 cm e F = 2,5 GHz.	121
Figura 5.5 – Tubulação com Corrugamento	121
Figura 5.7– Tubulação com Corrugamento e Suporte	122
Figura 5.8 – Dados Simulados para ρ = 18,6267 cm, H = 1 cm, C = 2 cm e F = 2,5 GHz	123
Figura 5.9 – Reflexões do Suporte	124
Figura 5.10 – Dados Simulados para ρ = 18,6267 cm, H = 1 cm, C = 2 cm e F = 1,867 GHz	125
Figura 5.11 – Dados Simulados para ρ = 18,6267 cm, H = 1 cm, C = 2 cm e F = 1,867 GHz.	125
Figura 5.12 – Dados Simulados para Diferentes Alturas, H = 1 cm, C = 2 cm e F = 1,867 GHz.	126
Figura 5.13 - Dados Simulados para Diferentes $\rho = 19,4733$, 18,6267 e 17,78 cm e F = 1,867 GHz	128
Figura 5.14 - Dados Simulados para Diferentes $\rho = 19,4733$, 18,6267 e 17,78 cm e F = 1,867 GHz	129
Figura 5.15 - Dados Simulados para Diferentes $\rho = 18,6267$ cm e F = 1,867 GHz	130

Lista de Tabelas

Tabela 3.1 – Constantes para Funções Quadráticas	51
Tabela 3.2 – Constantes para Funções Cúbicas	55
Tabela 4.1 – Dimensões	81
Tabela 4.2 – Definição das Grades	81
Tabela 4.3 - Taxa de Amostragem para a Malha 19RO-43Z	83
Tabela 4.4 – Tempos de Processamento	91
Tabela 4.5 – Grade 19RO-43Z com 859 nós.	93
Tabela 4.6 – Grade 19RO-61Z com 1201 nós.	93
Tabela 4.7 – Grade 19RO-109Z com 2149 nós.	96
Tabela 4.8 – Grade 49RO-49Z com 1891 nós.	98
Tabela 4.9 – Grade 49RO-67Z com 2923 nós.	99
Tabela 4.10 – Grade 19RO-55Z com 1045 nós.	101
Tabela 4.11 – Grades com NN em RO = 19 e taxa de amostragem, TA, para 20 GHz.	102
Tabela 4.12 – Dimensões dos seguimentos da Figura 4.28	104
Tabela 4.13 – Malha da Figura 4.28	105
Tabela 4.14 – Dimensões dos seguimentos da Figura 4.30	106
Tabela 4.15 – Malha da Figura 4.30	106
Tabela 4.16 – Dimensões dos seguimentos da Figura 4.33	108
Tabela 4.17 – Malha da Figura 4.33	108
Tabela 4.18 – Dimensões dos seguimentos da Figura 4.33 após a Otimização	111

Tabela 5.1– Dimensões dos Segmentos.

117

Tabela 5.2 – Grade para o Guia Liso – 1843 Nós.	119
Tabela 5.3 – Dimensões do Guia com Corrugamento.	121
Tabela 5.4 – Grade Utilizada no Guia Corrugado – 1885 Nós.	121
Tabela 5.5 – Dimensões do Guia com Corrugamento e Suporte.	122
Tabela 5.6 – Grade Utilizada no Guia Corrugado – 1885 Nós.	123
Tabela 5.7 – Dimensões Fixas.	126
Tabela 5.8 – Dimensões dos Corrugamentos.	127
Tabela 5.9 – Grade Utilizada no Guia Corrugado – 1885 Nós.	127
Tabela 5.10 – Relação entre Intensidades de Campos para $\rho = 18,6267$	130
cm	

Tabela 5.11 – Dimensões Fixas.

131